首页> 外文期刊>Measurement Science & Technology >High-rate multi-GNSS attitude determination: experiments, comparisons with inertial measurement units and applications of GNSS rotational seismology to the 2011 Tohoku Mw9.0 earthquake
【24h】

High-rate multi-GNSS attitude determination: experiments, comparisons with inertial measurement units and applications of GNSS rotational seismology to the 2011 Tohoku Mw9.0 earthquake

机译:高速率多GNSS姿态确定:实验,与惯性测量单位的比较和GNSS旋转地震学的应用到2011年的Tohoku MW9.0地震

获取原文
获取原文并翻译 | 示例
       

摘要

High-rate GNSS positioning has been widely investigated and applied in science and engineering. We extend it to high-rate attitude determination under a multi-GNSS constellation. A series of experiments of high-rate GNSS attitude determination has been conducted on a platform with three 50 Hz geodetic receivers and two high-grade inertial measurement units (IMU). The high-rate attitude solutions are computed for each of the multi-GNSS systems and the combined constellation by either using short baselines with correct ambiguity resolution or precise point positioning (PPP) and compared with the IMU measurements. In the case of a single GNSS system, the experimental results have shown that GPS is of the best accuracy, followed by GLONASS. The results with Beidou are the noisiest. The combined multi-GNSS constellation can significantly improve the high-rate attitude solutions from any single GNSS system alone, which is, in particular, most suitable for applications to any platform in slow or quasi-static motion. However, the improvement rate could depend on proper weightings of measurements from different GNSS systems in the dynamical experiments. The accuracy of baseline-based high-rate GNSS attitude solutions remains stable over time, while that of PPP-based solutions substantially degrades with time, as theoretically expected. Within a short period of time, the PPP-based high-rate yaw solutions with the combined multi-GNSS constellation are comparable in accuracy with those computed from baselines with correct ambiguity resolution in the dynamical experiments. The attitude results from either static or dynamical experiments have shown that high-rate GNSS attitude determination is sufficiently precise to measure rotatory motions. GNSS rotational seismology is applied to the 2011 Tohoku Mw9.0 earthquake, illustrating the potential of multi-GNSS to precisely detect seismic rotatory motions.
机译:高速GNSS定位已被广泛调查和应用于科学和工程。我们将其扩展到多GNSS星座下的高速姿态确定。已经在具有三个50 Hz大地测量接收器和两个高级惯性测量单元(IMU)的平台上进行了一系列高速GNSS姿态确定的实验。通过使用具有正确模糊分辨率或精确点定位(PPP)的短基线来计算用于每个多GNSS系统和组合星座的每个多GNSS系统和组合星座的高速姿态解决方案,并与IMU测量相比。在单个GNSS系统的情况下,实验结果表明,GPS具有最佳精度,其次是Glonass。北投的结果是最吵闹的。组合的多GNSS星座可以单独地显着提高来自任何单个GNSS系统的高速姿态解决方案,尤其适用于慢速或准静态运动的任何平台。然而,改善率可能取决于动态实验中不同GNSS系统的测量的适当重量。基于基于基于基线的高速GNSS姿态解决方案的准确性随着时间的推移保持稳定,而基于PPP的溶液的溶液的稳定性随着时间的推移而显着降低。在短时间内,具有组合的多GNSS星座的基于PPP的高速率偏航解决方案的精度可与从基线计算的那些,在动态实验中具有正确的模糊分辨率。来自静态或动态实验的姿势结果表明,高速GNSS姿态测定足以测量旋转运动。 GNSS旋转地震学应用于2011年的Tohoku MW9.0地震,说明了多GNSS精确地检测地震旋转运动的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号