首页> 外文期刊>Modelling and simulation in materials science and engineering >A hybrid finite-element and cellular-automaton framework for modeling 3D microstructure of Ti-6Al-4V alloy during solid-solid phase transformation in additive manufacturing
【24h】

A hybrid finite-element and cellular-automaton framework for modeling 3D microstructure of Ti-6Al-4V alloy during solid-solid phase transformation in additive manufacturing

机译:一种混合有限元和蜂窝自动机框架,用于在添加剂制造中固体相变期间Ti-6Al-4V合金3D微观结构

获取原文
获取原文并翻译 | 示例
       

摘要

Additive manufacturing such as selective laser sintering and electron beam melting has become a popular technique which enables one to build near-netshape product from packed powders. The performance and properties of the manufactured product strongly depends on its material microstructure, which is in turn determined by the processing conditions including beam power density, spot size, scanning speed and path etc. In this paper, we develop a computational framework that integrates the finite element method (FEM) and cellular automaton (CA) simulation to model the 3D microstructure of additively manufactured Ti-6Al-4V alloy, focusing on the beta - alpha + beta transition pathway in a consolidated alloy region as the power source moves away from this region. Specifically, the transient temperature field resulted from a scanning laser/electron beam following a zig-zag path is first obtained by solving nonlinear heat transfer equations using the FEM. Next, a CA model for the beta - alpha + beta phase transformation in the consolidated alloy is developed which explicitly takes into account the temperature dependent heterogeneous nucleation and anisotropic growth of a grains from the parent beta phase field. We verify our model by reproducing the overall transition kinetics predicted by the Johnson-Mehl-Avrami-Kolmogorov theory under a typical processing condition and by quantitatively comparing our simulation results with available experimental data. The utility of the model is further demonstrated by generating large-field realistic 3D alloy microstructures for subsequent structure-sensitive micro-mechanical analysis. In addition, we employ our model to generate a wide spectrum of alloy microstructures corresponding to different processing conditions for establishing quantitative process-structure relations for the system.
机译:添加剂制造如选择性激光烧结和电子束熔化已成为一种流行的技术,使得能够从填充粉末构建近乎网格产品。制造产品的性能和性能强烈取决于其材料微观结构,又通过加工条件确定,包括光束功率密度,光斑尺寸,扫描速度和路径等。在本文中,我们开发了集成的计算框架有限元方法(FEM)和蜂窝自动机(CA)模拟模拟含有Ti-6Al-4V合金的3D微观结构,专注于β - &随着电源远离该区域的统一合金区域中的alpha +β转换路径。具体地,首先通过使用FEM求解非线性传热方程之后的扫描激光/电子束产生的瞬态温度场。接下来,β - &gt的CA模型;开发了合并合金中的α+β相变,明确考虑到母β相区域的温度依赖性的异质成核和各向异性生长。我们通过在典型的处理条件下再现由Johnson-Mehl-Avrami-Kolmogorov理论预测的整体过渡动力学来验证我们的模型,并通过使用可用的实验数据定量比较我们的仿真结果。通过为随后的结构敏感微力分析产生大场逼真的3D合金微结构,进一步证明了该模型的效用。此外,我们采用我们的模型来产生对应于不同加工条件的广泛的合金微结构,用于建立系统的定量过程结构关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号