首页> 外文期刊>Modelling and simulation in materials science and engineering >Mesoscale understanding of ionic conduction in yttria stabilized zirconia: the nanoscale percolation network and its effect on O2- ion movement
【24h】

Mesoscale understanding of ionic conduction in yttria stabilized zirconia: the nanoscale percolation network and its effect on O2- ion movement

机译:中尺度理解亚钇稳定的氧化锆离子传导:纳米级渗透网络及其对O2离子运动的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Yttria-stabilized zirconia (YSZ) is widely used as a fast oxygen ion conductor in solid oxide fuel cells. Over the years several studies have probed the effect of different cation arrangements on the O2- ion hopping behavior at the atomistic scale. However, an analytical model that can predict the macroscopic ionic conductivity using both the atomic scale hopping behavior as well as the spatial arrangement of cations at the mesoscopic length scale is lacking. A novel mesoscale model is constructed as a step towards addressing this gap. First, using a kinetic Monte Carlo (KMC) model for YSZ we find evidence of a fast ion conducting percolation network being present. The tortuous network, which consists of connected regions spanning the material structure, mainly contributes to the ionic conduction as O2- ion movement in other regions is relatively slow. The topology, composition and O2- ion movement in the network are analyzed. Next, the shortest path lengths in the network are identified with the help of the Dijsktra algorithm. Finally, a diffusion model is developed that relates the atomic scale hopping rates and shortest path lengths (a mesoscale feature) to the macroscale ionic conductivity. Estimates for ionic conductivity from the diffusion model are in excellent agreement with the KMC model. Changes within the percolation network with increasing Y2O3 content can describe the maximum observed in ionic conductivity.
机译:氧化钇稳定的氧化锆(YSZ)广泛用作固体氧化物燃料电池中的快速氧离子导体。多年来,几项研究探讨了不同阳离子安排对原子标度O2离子跳跃行为的影响。然而,缺乏可以预测宏观离子电导率的分析模型,其缺乏原子尺跳跃行为以及在介于镜像长度尺度处的阳离子的空间排列。一种新颖的Mescale模型作为解决这种差距的一步。首先,使用YSZ的动力学蒙特卡罗(KMC)模型,我们发现存在快速离子进行渗透网络的证据。由跨越材料结构的连接区域组成的曲折网络主要有助于离子传导,因为其他区域的O2离子运动相对较慢。分析了网络中的拓扑,组成和O2-离子运动。接下来,利用DIJSKTRA算法识别网络中的最短路径长度。最后,开发了扩散模型,其涉及原子秤跳跃速率和最短路径长度(Mescale特征)到Macroscale离子电导率。来自扩散模型的离子电导率的估计与KMC模型很好。随着Y2O3内容的增加,渗透网络内的变化可以描述在离子电导率中观察到的最大值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号