首页> 外文期刊>Minerals Engineering >Controlled dissolution experiments in the rare earth orthophosphate system: Investigating fractionation pathways during caustic alkali cracking
【24h】

Controlled dissolution experiments in the rare earth orthophosphate system: Investigating fractionation pathways during caustic alkali cracking

机译:稀土正磷酸盐系统中的受控溶出实验:在苛性碱裂解过程中研究分馏途径

获取原文
获取原文并翻译 | 示例
           

摘要

The orthophosphate system includes two important minerals that represent economic sources of rare earth elements (REE). Monazite, with a monoclinic structure, can accommodate the large trivalent light REE (LREE). Xenotime is tetragonal and preferentially incorporates the smaller trivalent heavy REE (HREE). Through coupled substitutions, significant concentration of Th4+can also be present, especially within monazite. Due to their refractory nature, caustic cracking using NaOH solution has been used to decompose the orthophosphate minerals. However, this aggressive process is considered as a bulk non-selective approach where all the REE and actinides concentrate in a solid hydroxide cake. In this context, controlled alkali dissolution experiments on synthetic and natural monazite and xenotime crystals were performed in order to evaluate if, through characterization of the evolution of the decomposition reaction, more selective pathways may be identified. Our results indicate that due to a systematic temperature-dependent increase in the relative solubility of the REE hydroxides with decreasing trivalent ionic radii, a more selective expression of the orthophosphate alkali leaching reaction can be defined at temperatures exceeding?≈?165?°C. Of particular interest, in addition to a solid LREE-enriched hydroxide phase that can be dissolved in a weak HCl solution and an insoluble Th4+(±Ce4+) residue, the HREE are concentrated in an actinide-depleted dissolved fraction that, when preserved, can be recovered separately through precipitation upon cooling of the NaOH solution. Because the observed selectivity is not intrinsic to the orthophosphate decomposition but involves the partial dissolution of the hydroxide, up-front access to such an actinide-free HREE fraction could also be possible during alkali cracking of peralkaline-type refractory ores.
机译:正磷酸盐系统包括两个重要矿物,代表稀土元素(REE)的经济来源。 Monazite,具有单斜晶体结构,可以容纳大型三价光圈(LREE)。 Xenotime是四方的,优先包含较小的三价重圈(HREE)。通过耦合取代,也可以存在显着浓度的Th4 +,特别是在单桥内。由于它们的耐火性,使用NaOH溶液的腐蚀性裂缝已经用于分解正磷酸盐矿物质。然而,这种侵略性过程被认为是散装非选择性的方法,其中所有REE和散肌浓缩在固体氢氧化物饼中。在这种情况下,进行对合成和天然单氮化物和Xenotime晶体的受控碱溶解实验,以评估如果通过分解反应的演化的表征,可以鉴定更多的选择性途径。我们的结果表明,由于REE氢氧化物的相对溶解度与降低的三价离子半径的相对溶解度增加,可以在超过α165Ω·℃的温度下定义正磷酸盐碱浸出反应的更具选择性表达。特别令人兴趣的是,除了可以溶解在弱HCl溶液中的固体富含富含的富含氢氧化物相和不溶性TH4 +(±CE4 +)残留物之外,HREE在保存时浓缩,浓缩散,耗尽溶解的馏分,即在保存时,可以冷却NaOH溶液时通过沉淀分别回收。因为观察到的选择性不是正磷酸盐分解的内在,但涉及氢氧化物的部分溶解,在乳碱型耐火矿石的碱裂化期间也可以在碱性裂化期间上前进入这种无敏感的HREE级分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号