...
首页> 外文期刊>Mechanisms of Development >Anisotropy of cell division and epithelial sheet bending via apical constriction shape the complex folding pattern of beetle horn primordia
【24h】

Anisotropy of cell division and epithelial sheet bending via apical constriction shape the complex folding pattern of beetle horn primordia

机译:通过顶端收缩形状的细胞分裂和上皮片弯曲的各向异性甲虫喇叭原金属的复杂折叠模式

获取原文
获取原文并翻译 | 示例

摘要

Insects can dramatically change their outer morphology at molting. To prepare for this drastic transformation, insects generate new external organs as folded primordia under the old cuticle. At molting, these folded primordia are physically extended to form their final outer shape in a very short time. Beetle horns are a typical example. Horn primordia are derived from a flat head epithelial sheet, on which deep furrows are densely added to construct the complex folded structure. Because the 3D structure of the pupa horn is coded in the complex furrow pattern, it is indispensable to know how and where the furrows are set. Here, we studied the mechanism of furrow formation using dachsous (ds) gene knocked down beetles that have shorter and fatter adult horns. The global shape of the beetle horn primordia is mushroom like, with dense local furrows across its surface. Knockdown of ds by RNAi changed the global shape of the primordia, causing the stalk region become apparently thicker. The direction of cell division is biased in wildtype horns to make the stalk shape thin and tall. However, in ds knocked down beetles, it became random, resulting in the short and thick stalk shape. On the other hand, a fine and dense local furrow was not significantly affected by the ds knockdown. In developing wildtype horn primordia, we observed that, before the local furrow is formed, the apical constriction signal emerged at the position of the future furrow, suggesting the pre-pattern for the fine furrow pattern. According to the results, we propose that development of complex horn primordia can be roughly divided to two distinct processes, 1) development of global primordia shape by anisotropic cell division, and 2) local furrow formation via actin-myosin dependent apical constriction of specific cells.
机译:昆虫可以在蜕皮下显着改变它们的外部形态。为这种激烈转化做准备,昆虫在旧角质层下产生新的外部器官。在蜕皮中,这些折叠的基金是物理上延伸以在很短的时间内形成它们的最终外形。甲壳虫喇叭是一个典型的例子。喇叭原始衍生自平顶上皮板,在这种情况下,深沟均匀加入,以构建复杂的折叠结构。因为蛹喇叭的3D结构在复杂的沟槽模式中编码,所以知道沟槽的系统和位置是必不可少的。在这里,我们研究了使用大声(DS)基因撞击甲虫的沟槽形成的机制,甲壳物较短,更胖的成人角。甲虫喇叭原始植物的全球形状是蘑菇,其表面致密的局部沟。 RNAi的DS敲低改变了原始的全球形状,导致秸秆区域变得显然较厚。细胞分裂的方向偏向于野生型角,使茎状形状薄而高。然而,在DS敲下甲虫,它变得随机,导致茎状短而厚。另一方面,DS敲低的良好和致密的局部沟槽不会受到显着影响。在开发野生型喇叭原始亚洲,我们观察到,在形成局部沟槽之前,在未来沟槽的位置出现了顶端收缩信号,表明细沟状图案的预先模式。根据结果​​,我们提出了复杂喇叭原金属的发展可以大致分为两种不同的方法,1)通过各向异性细胞分裂的全局原序形状的发展,并通过肌动蛋白 - 肌球蛋白依赖于特异性细胞的顶端收缩来形成局部沟槽。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号