首页> 外文期刊>Marine & freshwater research >Hyperspectral remote sensing monitoring of cyanobacteria blooms in a large South American reservoir: high-and medium-spatial resolution satellite algorithm simulation
【24h】

Hyperspectral remote sensing monitoring of cyanobacteria blooms in a large South American reservoir: high-and medium-spatial resolution satellite algorithm simulation

机译:大型南美储层中蓝藻散布的高光谱遥感监测:高中空间分辨率卫星算法模拟

获取原文
获取原文并翻译 | 示例
           

摘要

We used hyperspectral remote sensing with the aim of establishing a monitoring program for cyanobacteria in a South American reservoir. We sampled at a wide temporal (2012-16; 10 seasons) and spatial (30 km) gradient, and retrieved 111 field hyperspectral signatures, chlorophyll-a, cyanobacteria densities and total suspended solids. The hyperspectral signatures for cyanobacteria-dominated situations (n = 75) were used to select the most suitable spectral bands in seven high-and medium-spatial resolution satellites (Sentinel 2, Landsat 5, 7 and 8, SPOT-4/5 and-6/7, WorldView 2), and for the development of chlorophyll and cyanobacteria cell abundance algorithms (λ_(550)-λ_(650) + λ_(800)) C (λ_(550) + λ_(650) + λ_(800)). The best-performing chlorophyll algorithm was Sentinel 2 ((λ_(560)-λ_(660) + λ_(703)) C (λ_(560) + λ_(660) + λ_(703)); R~2 = 0.80), followed by WorldView 2 ((λ_(550)-λ_(660) + λ_(720)) C (λ_(550) + λ_(660) + λ_(720)); R~2 = 0.78), Landsat and the SPOT series ((λ_(550)-λ_(650) + λ_(800)) C (λ_(550) + λ_(650) + λ_(800)); R~2 = 0.67-0.74). When these models were run for cyanobacteria abundance, the coefficient of determination remained similar, but the root mean square error increased. This could affect the estimate of cyanobacteria cell abundance by ~20%, yet it still enable assessment of the alert level categories for risk assessment. The results of this study highlight the importance of the red and near-infrared region for identifying cyanobacteria in hypereutrophic waters, demonstrating coherence with field cyanobacteria abundance and enabling assessment of bloom distribution in this ecosystem.
机译:我们使用高光谱遥感,目的是建立南美水库中的蓝色细胞的监测程序。我们在广泛的时间(2012-16; 10个赛季)和空间(30公里)梯度上进行采样,并检索111个田间高光谱特征,叶绿素-A,蓝细菌密度和总悬浮固体。用于蓝细菌统治情况(n = 75)的高光谱特征用于在七个高中空间分辨率卫星(哨兵2,Landsat 5,7和8,Spot-4/5中选择最合适的光谱带。 6/7,WorldView 2),以及开发叶绿素和蓝藻细胞丰度算法(λ_(550)-λ_(650)+λ_(800))C(λ_(550)+λ_(650)+λ_(800 )))。最佳性能的叶绿素算法是Sentinel 2((λ_(560)-λ_(660)+λ_(703))c(λ_(560)+λ_(660)+λ_(703)); R〜2 = 0.80) ,后跟世界观2((λ_(550)-λ_(660)+λ_(720))c(λ_(550)+λ_(660)+λ_(720)); r〜2 = 0.78),Landsat和点系列((λ_(550)-λ_(650)+λ_(800))C(λ_(550)+λ_(650)+λ_(800)); R〜2 = 0.67-0.74)。当这些模型用于蓝色细菌丰富时,确定系数仍然相似,但根均方误差增加。这可能会影响Cyanobacteria细胞丰富的估计〜20%,但它仍然能够评估警报级别类别的风险评估。本研究的结果突出了红色和近红外区域对鉴定过度营养水域中的蓝细菌的重要性,证明了与田间蓝细菌丰富的连贯性,并使该生态系统中的绽放分布进行评估。

著录项

  • 来源
    《Marine & freshwater research》 |2020年第5期|共13页
  • 作者单位

    Comisión Administradora del Río Uruguay Avenida Costanera Norte S/N Paysandú C.C. 57097-Uruguay;

    Instituto de Botánica Darwinion Labardén 200 Acassuso Buenos Aires Argentina;

    Comisión Administradora del Río Uruguay Avenida Costanera Norte S/N Paysandú C.C. 57097-Uruguay;

    Comisión Administradora del Río Uruguay Avenida Costanera Norte S/N Paysandú C.C. 57097-Uruguay;

    Comisión Técnica Mixta Salto Grande Argentina Leandro N. Alem 449 Capital Federal (C.C. 1003) Argentina;

    Comisión Nacional de Actividades Espaciales (CONAE) Belgrano 210 Oeste 10 (C.C. 5500) Mendoza Argentina;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 水文科学(水界物理学);
  • 关键词

    Dolichospermum; Microcystis; Salto Grande Reservoir;

    机译:dolichospermum;微囊杆菌;萨尔托格兰德水库;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号