>The Huanggang iron–tin polymetallic skarn deposit is located in the southern Great Xing'an Range. According to the '/> Geochemistry of magnetite from the <fc xmlns='http://www.wiley.com/namespaces/wiley'>Huanggang</fc>Huanggang skarn iron–tin polymetallic deposit in the southern <fc xmlns='http://www.wiley.com/namespaces/wiley'>Great Xing'an Range, NE China</fc>Great Xing'an Range, NE China
首页> 外文期刊>Geological Journal >Geochemistry of magnetite from the HuanggangHuanggang skarn iron–tin polymetallic deposit in the southern Great Xing'an Range, NE ChinaGreat Xing'an Range, NE China
【24h】

Geochemistry of magnetite from the HuanggangHuanggang skarn iron–tin polymetallic deposit in the southern Great Xing'an Range, NE ChinaGreat Xing'an Range, NE China

机译:来自黄岗黄岗矽卡岩铁锡多金属矿床伟大的兴安范围,NE中国伟兴安范围,NE中国

获取原文
获取原文并翻译 | 示例
           

摘要

>The Huanggang iron–tin polymetallic skarn deposit is located in the southern Great Xing'an Range. According to the ore types and mineral assemblages, the paragenetic sequence of the Huanggang deposit can be divided into three stages, and these magnetite grains were mainly formed at the retrograde and sulphide skarn stages. The magnetite (sample HG12‐13) from the early retrograde stage is represented by fine‐grained magnetite cutting across coarse‐grained magnetite surrounded by quartz and calcite. The magnetite (sample HG12‐73) from the late retrograde stage is locally replaced by haematite along the margin or interior and is surrounded by calcite. The magnetite (sample HG12‐88) from the early sulphide stage is characterized by obvious core–rim textural features. The magnetite (sample HG‐62) from the late sulphide stage is featured by zone‐like magnetite occurring along the margin and interior of the primary magnetite. >Laser ablation inductively coupled plasma mass spectrometry was used to obtain trace element concentrations of magnetite from the different mineralization stages in order to better understand the geochemical variations in the ore‐forming process. Some magnetite grains have abnormally high Mg, Al, K, Cu, Zn, and Sn due to the presence of numerous inclusions (e.g., chlorite, sylvite, chalcopyrite, sphalerite, and cassiterite). In general, magnetite grains from the different mineralization stages demonstrate similar bulk continental crust normalized trace elements patterns, suggesting that they share a similar origin. The increasing Si?+?Al/Mg?+?Mn ratios and decreasing Mg?+?Mn contents for magnetite show an increasing fluid–rock ratio from the retrograde to sulphide stage. Co contents of magnetite decrease abruptly from the retrograde stage to the sulphide stage, whereas Mn contents show the reverse trend, which is affected by minerals c
机译: >黄岗铁锡多金属矽卡岩矿床位于南方大兴'一个范围。根据矿石类型和矿物组装,黄康沉积物的平原序列可分为三个阶段,这些磁铁矿晶粒主要形成在逆行和硫化物矽卡阶段。来自早期逆行阶段的磁铁矿(样品HG12-13)由细粒磁铁矿切割,穿过石英和方解石包围的粗粒磁铁矿。来自晚期逆行阶段的磁铁矿(样品HG12-73)通过沿着边缘或内部的氧气局部代替,并被方解石包围。来自早期硫化物阶段的磁铁矿(样品HG12-88)的特征在于明显的核心边缘纹理特征。来自后硫化物阶段的磁铁矿(样品HG-62)由沿初级磁铁矿的边缘和内部发生的区域样磁铁矿。激光烧蚀电感耦合等离子体质谱法用于获得痕量从不同的矿化阶段的磁铁矿元素浓度,以更好地了解矿石形成过程中的地球化学变化。由于存在许多夹杂物(例如,亚氯酸盐,盐酸盐,黄铜矿,蝎子和烧结液,一些磁铁矿晶粒具有异常高的Mg,Al,K,Cu,Zn和Sn和Sn。通常,来自不同矿化阶段的磁铁矿谷物展示了类似的散装大陆地壳标准化的微量元素模式,表明它们共享类似的起源。增加的Si?+α+?+ + + + +ΔmN比率和磁铁矿的含量减少,磁铁矿的含量从逆行到硫化物阶段的流体岩石比增加。磁铁矿的CO含量从逆行阶段突然降低到硫化物阶段,而Mn含量显示逆转趋势,受矿物质的影响

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号