...
首页> 外文期刊>Metabolic engineering >Metabolic flux ratio analysis by parallel C-13 labeling of isoprenoid biosynthesis in Rhodobacter sphaeroides
【24h】

Metabolic flux ratio analysis by parallel C-13 labeling of isoprenoid biosynthesis in Rhodobacter sphaeroides

机译:通过平行C-13标记的代谢助焊剂比分析异戊二烯生物合成中的乳头菌乳骨骨骨膜

获取原文
获取原文并翻译 | 示例
           

摘要

Metabolic engineering for increased isoprenoid production often benefits from the simultaneous expression of the two naturally available isoprenoid metabolic routes, namely the 2-methyl-D-erythritol 4-phosphate (MEP) pathway and the mevalonate (MVA) pathway. Quantification of the contribution of these pathways to the overall isoprenoid production can help to obtain a better understanding of the metabolism within a microbial cell factory. Such type of investigation can benefit from C-13 metabolic flux ratio studies. Here, we designed a method based on parallel labeling experiments (PLEs), using [1-C-13]- and [4-C-13]glucose as tracers to quantify the metabolic flux ratios in the glycolytic and isoprenoid pathways. By just analyzing a reporter isoprenoid molecule and employing only four equations, we could describe the metabolism involved from substrate catabolism to product formation. These equations infer C-13 atom incorporation into the universal isoprenoid building blocks, isopentenyl-pyrophosphate (IPP) and dimethylallyl-pyrophosphate (DMAPP). Therefore, this renders the method applicable to the study of any of isoprenoid of interest. As proof of principle, we applied it to study amorpha-4,11-diene biosynthesis in the bacterium Rhodobacter sphaeroides. We confirmed that in this species the Entner-Doudoroff pathway is the major pathway for glucose catabolism, while the Embden-Meyerhof-Parnas pathway contributes to a lesser extent. Additionally, we demonstrated that co-expression of the MEP and MVA pathways caused a mutual enhancement of their metabolic flux capacity. Surprisingly, we also observed that the isoprenoid flux ratio remains constant under exponential growth conditions, independently from the expression level of the MVA pathway. Apart from proposing and applying a tool for studying isoprenoid biosynthesis within a microbial cell factory, our work reveals important insights from the co-expression of MEP and MVA pathways, including the existence of a yet unclear interaction between them.
机译:代谢工程增加等异戊二烯的产量往往受益于两种天然的异戊二烯代谢途径的同时表达,即2-甲基-D-赤藓糖醇4-磷酸(MEP)途径和甲羟戊酯(MVA)途径。定量这些途径对整体异戊二烯的贡献可以有助于更好地理解微生物细胞厂内的新陈代谢。这种类型的调查可以从C-13代谢助焊剂比例中受益。这里,我们设计了一种基于并联标记实验(PLES)的方法,使用[1-C-13] - 和[4-C-13]葡萄糖作为示踪剂,以定量糖酵解和异戊二烯途径中的代谢通量比率。通过仅分析报告者等异细胞分子并仅使用四个方程,我们可以描述从基质分解代谢到产品形成中所涉及的新陈代谢。这些等式将C-13原子掺入通用异戊二烯结构块,异戊烯基 - 焦磷酸(IPP)和二甲基溶解(DMAPP)中。因此,这使得该方法适用于任何感兴趣的异戊二烯的研究。作为原理的证据,我们将其应用于在细菌乳菌斯氏菌氏菌中的氨基-4,11-二烯生物合成。我们证实,在该物种中,Entner-Doudoroff途径是葡萄糖分解代谢的主要途径,而Embden-Meyerhof-Parnas途径有助于较小程度。此外,我们证明了MEP和MVA途径的共同表达导致其代谢通量容量相互提高。令人惊讶的是,我们还观察到等异戊二烯焊剂比在指数生长条件下保持恒定,独立于MVA途径的表达水平。除了提出和应用用于在微生物细胞工厂中学习异戊二烯生物合成的工具,我们的作品揭示了来自MEP和MVA途径的共同表达的重要见解,包括存在于它们之间尚不清楚的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号