首页> 外文期刊>Metallurgist >Effect of Structure on Ductile-Brittle Transition in Steels with BCC-Lattice
【24h】

Effect of Structure on Ductile-Brittle Transition in Steels with BCC-Lattice

机译:结构对BCC晶格钢韧性脆性过渡的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The effect of structural characteristics (ferrite, ferrite + pearlite, sorbite) including morphology, size and distribution of nonmetallic inclusions of different morphology, sizes and distribution, on ductile-brittle transition in structural steels is considered. It is shown that an elementary ductile microcrack is initiated by particles of critical size. For steels with ferrite-pearlite and sorbite microstructure, the particle size (carbide, nitride and nonmetallic inclusions) is almost the same. The ductile-brittle transition is caused by competition of the size of the brittle and ductile (pits) microcracks. As a result, the critical brittleness temperature T (c) in simplified form looks like where elementary microcracks I (b) and I (d) correspond to the size of a brittle crack of transcrystalline cleavage (I (b) ) and the size of ductile crack (I (d) ), D cent (c) (0) reflects the contribution of different strengthening mechanisms to metal yield strength: dislocation, solid solution, grain size, precipitation hardening, and others, and B is a coefficient taking into account the stress-strain state in the fracture zone. As part of this model of failure, it becomes clear why for hardened steel the grain size does not change up to the recrystallization temperature, and yield strength and the value of T (c) have a complex dependence on the tempering temperature. Since the steel has particles of different sizes, they initiate the occurrence of pits of different sizes. The larger the particle, the sooner a micropore originates around it and pit growth is faster. A wide range of pit sizes arises that causes a wide range of T (c) values. A close connection is demonstrated for the width of the Delta T (c) ductile-brittle transition temperature range with a change in the distance between particles, including between pearlite colonies. This relationship can be positive and negative, which is confirmed by experiment.
机译:考虑了结构特征(铁氧体,铁氧体+珠光体,索氏)的影响,包括不同形貌,尺寸和分布的非金属夹杂物的形态,大小和分布,对结构钢中的韧性脆性过渡。结果表明,由临界大小的颗粒引发基本延性微裂纹。对于具有铁素体 - 珠光体和索氏菌丝微观结构的钢,粒度(碳化物,氮化物和非金属夹杂物)几乎相同。韧性 - 脆性转变是由脆性和韧性(凹坑)微裂纹的尺寸竞争引起的。结果,简化形式的临界脆性温度T(c)看起来像基本微裂纹I& (b)和i& (d)对应于经晶裂解的脆性裂纹(I&(b))和延展岩裂缝的尺寸(i&(d)),d cent(c)(0)反映了不同的贡献强化金属屈服强度的机制:位错,固溶体,粒度,沉淀硬化等,B是考虑断裂区中应力 - 应变状态的系数。作为这种故障​​型号的一部分,它明确为什么硬化钢的原因,晶粒尺寸不会改变到再结晶温度,并且屈服强度和T(c)的值对回火温度具有复杂的依赖性。由于钢具有不同尺寸的颗粒,因此它们引发了不同尺寸的凹坑的发生。粒子越大,微孔越早源于它,坑生长速度越快。出现各种凹坑尺寸,导致宽范围的T(c)值。对于δT(c)型脆性转变温度范围的宽度来证明紧密连接,其颗粒之间的距离变化,包括珠光体菌落之间的距离。这种关系可以是正负的,其通过实验确认。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号