...
首页> 外文期刊>Mathematical Programming >Exact and approximation algorithms for weighted matroid intersection
【24h】

Exact and approximation algorithms for weighted matroid intersection

机译:加权Matroid交叉口的精确和近似算法

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we propose new exact and approximation algorithms for the weighted matroid intersection problem. Our exact algorithm is faster than previous algorithms when the largest weight is relatively small. Our approximation algorithm delivers a (1-E)-approximate solution with a running time significantly faster than most known exact algorithms. The core of our algorithms is a decomposition technique: we decompose an instance of the weighted matroid intersection problem into a set of instances of the unweighted matroid intersection problem. The computational advantage of this approach is that we can make use of fast unweighted matroid intersection algorithms as a black box for designing algorithms. More precisely, we show that we can solve the weighted matroid intersection problem via solving W instances of the unweighted matroid intersection problem, where W is the largest given weight, assuming that all given weights are integral. Furthermore, we can find a (1-E)-approximate solution via solving O(E-1logr) instances of the unweighted matroid intersection problem, where r is the smaller rank of the two given matroids. Our algorithms make use of the weight-splitting approach of Frank (J Algorithms 2(4):328-336, 1981) and the geometric scaling scheme of Duan and Pettie (J ACM 61(1):1, 2014). Our algorithms are simple and flexible: they can be adapted to special cases of the weighted matroid intersection problem, using specialized unweighted matroid intersection algorithms. In addition, we give a further application of our decomposition technique: we solve efficiently the rank-maximal matroid intersection problem, a problem motivated by matching problems under preferences.
机译:在本文中,我们为加权Matroid交叉口问题提出了新的精确和近似算法。当最大重量相对较小时,我们的确切算法比以前的算法快。我们的近似算法提供了一个(1-e)的千克解决方案,其运行时间明显快于大多数已知的精确算法。我们的算法的核心是一种分解技术:我们将加权MATROID交叉点的实例分解为未加权的MATROID交叉点问题的一组实例。这种方法的计算优势在于我们可以利用快速的未加权Matroid交叉点作为用于设计算法的黑匣子。更确切地说,我们表明我们可以通过解决未加权的麦克风交叉路切问题的WI实例来解决加权麦克斗交叉路口问题,其中W是给定权重的最大,假设所有给定的权重都是积分的。此外,我们可以通过求解o(e-1logr)的o(e-1logr)实例来找到一个(1-e)的批量解决方案,其中r是r是较小的给定丙醇的较小等级。我们的算法利用Frank(J算法2(4):328-336,1981)的重量分裂方法以及段和PETTIE的几何缩放方案(J ACM 61(1):1,2014)。我们的算法简单且灵活:它们可以适应加权Matroid交叉路口问题的特殊情况,采用专业的未加权麦克风交叉口算法。此外,我们还提供了我们的分解技术的进一步应用:我们在高效地解决了秩最大的麦克风交叉路切问题,通过匹配偏好问题的问题激励。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号