...
首页> 外文期刊>Materials Characterization >Development of a novel fcc structure for an amorphous-nanocrystalline Ti-33Nb-4Mn (at.%) ternary alloy
【24h】

Development of a novel fcc structure for an amorphous-nanocrystalline Ti-33Nb-4Mn (at.%) ternary alloy

机译:用于无定形纳米晶Ti-33n-33n-33n-33n-33nb-4mn(atty)三元合金的新型FCC结构

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

AbstractIn this work, a novel amorphous-nanocrystalline titanium?niobium?manganese solid solution ternary alloy with a Ti-33Nb-4Mn (at.%) nominal composition was developed by a High-Energy Mechanical Alloying. Nb and Mn were added to the elemental Ti as a β-phase (bcc) stabilizer and an amorphization promoter, respectively. The system evolved from the elemental Ti, Nb and Mn raw materials to a body centred cubic (bcc) TiNbMn alloy and, finally, to the formation of an original and stable face centred cubic (fcc) nanocrystalline TiNbMn alloy, not reported until now, at short milling time (20h). This alloy remains invariant until 120h. In turn, the partial amorphization of the system occurs and increases until at intermediate milling time (80h). The production of both originalfccand the amorphous TiNbMn alloy may be beneficial for reducing the Young's modulus and improving the mechanical strength pursued for the Ti alloy. The optimal milling time respect to the amorphization, nanocrystalline size and Fe mount from milling media was 60h and 80h (TiNbMn60handTiNbMn80h), with >50wt% of an amorphous phase and a crystalline domain size of approximately 5nm.Graphical AbstractDisplay OmittedHighlights?An amorphized-nanocrystalline TiNbMn alloy was obtained via mechanical alloying.?The obtained TiNbMn ternary alloy evolved with the mechanical alloying time.?At lower milling time, two nanocrystalline phases (bcc and fcc) were developed.?At higher milling time, a stable amorphous-nanocrystalline fcc-alloy was obtained.?The fcc structure has not been previously published for Ti based alloys.]]>
机译:<![cdata [ Abstract 在这项工作中,一种新的无定形纳米晶钛?铌?锰固溶三元合金,Ti-33nb-4mn(at。%)标称组合物由高能机械合金化开发。将Nb和Mn加入到元素Ti中,作为β相( BCC )稳定剂和非晶促进剂。该系统从元素Ti,Nb和Mn原料进化到身体中心的立方体( bcc )锡罐合金,最后,形成原始且稳定的面部中心的立方体( fcc )纳米晶inalbmn合金,直到现在,直到现在,在短磨时间(20h)。这种合金仍然不变,直到120h。反过来,系统的部分杂化发生并增加直至中间研磨时间(80h)。原始 fcc 和无定形Tinbmn合金的生产可能有利于降低杨氏模量并提高追踪Ti合金的机械强度。从铣削介质的反相色泽,纳米晶体尺寸和Fe安装的最佳铣削时间为60h和80h( tinbmn60h tinbmn80h ),与> 50wt%的无定形相和结晶畴大约约5nm。 图形摘要 显示省略 亮点 通过机械合金化获得非晶纳米晶inalbmn合金。 在较低铣削时间下,开发了两种纳米晶相(BCC和FCC)。 在较高铣削时间下,获得稳定的无定形纳米晶体FCC-合金。 FCC结构尚未发布对于Ti基合金。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号