首页> 外文期刊>Marine and Petroleum Geology >Gas hydrate formation in compressional, extensional and un-faulted structural settings - Examples from New Zealand's Hikurangi margin
【24h】

Gas hydrate formation in compressional, extensional and un-faulted structural settings - Examples from New Zealand's Hikurangi margin

机译:气体水合物形成压缩,延伸和未断层结构设置 - 来自新西兰的Hikurangi边缘的实例

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate gas hydrate formation processes in compressional, extensional and un-faulted settings on New Zealand's Hikurangi margin using seismic reflection data. The compressional setting is characterized by a prominent subduction wedge thrust fault that terminates beneath the base of gas hydrate stability, as determined from a bottom-simulating reflection (BSR). The thrust is surrounded by steeply dipping strata that cross the BSR at a high angle. Above the BSR, these strata are associated with a high velocity anomaly that is likely indicative of relatively concentrated, and broadly distributed, gas hydrates. The un-faulted setting-sedimentary infill of a slope basin on the landward side of a prominent thrust ridge-is characterized by a strong BSR, a thick underlying free gas zone, and short positive polarity reflection segments that extend upward from the BSR. We interpret the short reflection segments as the manifestation of gas hydrates within relatively coarse-grained sediments. The extensional setting is a localized, shallow response to flexural bending of strata within an anticline. Gas has accumulated beneath the BSR in the apex of folding. A high-velocity zone directly above the BSR is probably mostly lithologically-derived, and only partly related to gas hydrates. Although each setting shows evidence for focused gas migration into the gas hydrate stability zone, we interpret that the compressional tectonic setting is most likely to contain concentrated gas hydrates over a broad region. Indeed, it is the only setting associated with a deep-reaching fault, meaning it is the most likely of the three settings to have thermogenic gas contributing to hydrate formation. Our results highlight the importance of anisotropic permeability in layered sediments and the role this plays in directing sub-surface fluid flow, and ultimately in the distribution of gas hydrate. Each of the three settings we describe would warrant further investigation in any future consideration of gas hydrates as an energy resource on the Hikurangi margin. (C) 2017 Elsevier Ltd. All rights reserved.
机译:我们使用地震反射数据调查新西兰的Hikurangi边缘的压缩,延伸和未接口设置中的气体水合物形成过程。压缩设定的特征在于,从底部模拟反射(BSR)中确定,突出的俯冲楔形螺杆止动故障终止于气体水合物稳定性的基础下方。推力被陡峭的浸渍地层包围,使BSR以高角度越过。在BSR之上,这些层与高速异常相关的,该高速异常可能指示相对浓度和宽泛分布的气体水合物。突出推力脊的落地侧上的斜坡盆地的未出现故障设置沉积填料 - 以强大的BSR,厚的底层自由气区和从BSR向上延伸的短正极反射段。我们将短反射段解释为气体水合物在相对粗粒沉积物内的气体水合物的表现。延伸设置是对斜线内地层的弯曲弯曲的本地化的浅响应。气体在折叠顶点中积聚在BSR下方。直接在BSR上方的高速区可能主要是岩性衍生,并且仅与天然气水合物部分相关。尽管每个设置显示将聚焦气体迁移到气体水合物稳定区的证据,但是解释了压缩构造结构最有可能在宽区域上含有水合物的浓缩气体。实际上,它是唯一与深度达到的故障相关的设置,这意味着三种设置的最有可能导热的气体有助于水合物形成。我们的结果突出了层状沉积物在层状沉积物中的重要性,并且这在引导亚表面流体流动方面发挥作用,最终在天然气水合物的分布中。我们描述的三种环境中的每一个都将在未来对HIKURANGI保证金上的能源资源的任何未来考虑因素中进行进一步调查。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号