首页> 外文期刊>ACS nano >Se4+ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance
【24h】

Se4+ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance

机译:Se4 +离子修饰的高导电性Ti3C2 MXene:具有增强的容量和循环性能的有前途的锂离子阳极

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional transition metal carbide materials called MXenes show potential application for energy storage due to their remarkable electrical conductivity and low Le diffusion barrier. However, the lower capacity of MXene anodes limits their further application in lithium-ion batteries. Herein, with inspiration from the unique metal ion uptake behavior of highly conductive Ti3C2 MXene, we overcome this impediment by fabricating Sn4+ ion decorated Ti3C2 nanocomposites (PVP-Sn(IV)@Ti3C2) via a facile polyvinylpyrrolidone (PVP)-assisted liquid -phase immersion process. An amorphous Sn(IV) nanocomplex, about 6-7 nm in lateral size, has been homogeneously anchored on the surface of alk-Ti3C2 matrix by ion-exchange and electrostatic interactions. XRD and TEM results demonstrate the successful insertion of Sn4+ into the interlamination of an alkalization-intercalated Ti3C2 (alk-Ti3C2) matrix. Due to the possible "pillar effect" of Sn between layers of alk-Ti3C2 and the synergistic effect between the alk-Ti3C2 matrix and Sn, the nanocomposites exhibit a superior reversible volumetric capacity of 1375 mAh cm(-3) (635 mAh g(-1)) at 216.5 mA cm(-3) (100 mA g(-1)), which is significantly higher than that of a graphite electrode (550 mAh cm 3), and show excellent cycling stability after 50 cycles. Even at a high current density of 6495 mA cm(-3) (3 A g(-1)), these nanocomposites retain a stable specific capacity of 504.5 mAh cm(-3) (233 mAh g(-1)). These results demonstrate that PVP-Sn(IV)@Ti3C2 nanocomposites offer fascinating potential for high-performance lithium -ion batteries.
机译:二维过渡金属碳化物材料MXenes由于其卓越的导电性和低Le扩散势垒而具有潜在的储能应用。但是,MXene阳极的较低容量限制了它们在锂离子电池中的进一步应用。在此,我们从高导电性Ti3C2 MXene独特的金属离子吸收行为中获得灵感,我们通过一种简便的聚乙烯吡咯烷酮(PVP)辅助液相制备Sn4 +离子修饰的Ti3C2纳米复合材料(PVP-Sn(IV)@ Ti3C2)克服了这一障碍。浸泡过程。通过离子交换和静电相互作用,横向尺寸约为6-7 nm的非晶Sn(IV)纳米复合物已均匀地锚固在alk-Ti3C2基质的表面上。 XRD和TEM结果表明,Sn4 +已成功插入碱化嵌入的Ti3C2(alk-Ti3C2)基质的层间中。由于锡在alk-Ti3C2层之间可能产生的“柱状效应”以及alk-Ti3C2基质与Sn之间的协同效应,因此纳米复合材料显示出1375 mAh cm(-3)(635 mAh g( -1))在216.5 mA cm(-3)(100 mA g(-1))时,显着高于石墨电极(550 mAh cm 3),并且在50次循环后显示出出色的循环稳定性。即使在6495 mA cm(-3)(3 A g(-1))的高电流密度下,这些纳米复合材料仍可保持504.5 mAh cm(-3)(233 mAh g(-1))的稳定比容量。这些结果表明,PVP-Sn(IV)@ Ti3C2纳米复合材料为高性能锂离子电池提供了诱人的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号