首页> 外文期刊>ACS nano >Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries
【24h】

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries

机译:高稳定性锂硫电池空心壳-壳互连碳球的工程设计

获取原文
获取原文并翻译 | 示例
           

摘要

We report engineered hollow core-shell interlinked carbon spheres that consist of a mesoporous shell, a hollow void, and an anchored carbon core and are expected to be ideal sulfur hosts for overcoming the shortage of Li-S batteries. The hollow core-shell interlinked carbon spheres were obtained through solution synthesis of polymer spheres followed by a pyrolysis process that occurred in the hermetical silica shell. During the pyrolysis, the polymer sphere was transformed into the carbon core and the carbonaceous volatiles were self-deposited on the silica shell due to the blocking effect of the hermetical silica shell. The gravitational force and the natural driving force of lowering the surface energy tend to interlink the carbon core and carbon/silica shell, resulting in a core-shell interlinked structure. After the SiO2 shell was etched, the mesoporous carbon shell was generated. When used as the sulfur host for Li-S batteries, such a hierarchical structure provides access to Li+ ingress/egress for reactivity with the sulfur and, meanwhile, can overcome the limitations of low sulfur loading and a severe shuttle effect in solid carbon-supported sulfur cathodes. Transmission electron microscopy and scanning transmission electron microscopy images provide visible evidence that sulfur is well-encapsulated in the hollow void. Importantly, such anchored-core carbon nanostructures can simultaneously serve as a physical buffer and an electronically connecting matrix, which helps to realize the full potential of the active materials. Based on the many merits, carbon-sulfur cathodes show a high utilization of sulfur with a sulfur loading of 70 wt % and exhibit excellent cycling stability (i.e., 960 mA h g(-1) after 200 cycles at a current density of 0.5 C).
机译:我们报道了由中孔壳,中空空隙和锚定碳核组成的工程空心核-壳互连碳球,并有望成为克服Li-S电池短缺的理想硫基质。中空的核-壳交联碳球是通过聚合物球的溶液合成,然后在密闭的二氧化硅壳中发生热解过程而获得的。在热解过程中,由于密封二氧化硅壳的封闭作用,聚合物球体转变为碳核,并且含碳挥发物自沉积在二氧化硅壳上。重力和降低表面能的自然驱动力倾向于使碳核与碳/硅壳相互连接,从而形成核-壳相互连接的结构。在蚀刻SiO 2壳之后,产生了中孔碳壳。当用作Li-S电池的硫基质时,这种分层结构提供了进入Li +入口/出口以与硫发生反应的能力,同时可以克服低硫负载和固体碳负载的严重穿梭效应的局限性硫阴极。透射电子显微镜和扫描透射电子显微镜图像提供了可见的证据,表明硫被很好地包裹在中空空隙中。重要的是,这样的锚定核心碳纳米结构可以同时充当物理缓冲剂和电子连接基质,这有助于实现活性材料的全部潜力。基于许多优点,碳硫阴极显示出硫的高利用率,硫负载量为70 wt%,并表现出出色的循环稳定性(即200次循环后在0.5 C的电流密度下为960 mA hg(-1)) 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号