首页> 外文期刊>Flow, turbulence and combustion >Numerical Investigation of Turbulent Kinetic Energy Dynamics in Chemically-Reacting Homogeneous Turbulence
【24h】

Numerical Investigation of Turbulent Kinetic Energy Dynamics in Chemically-Reacting Homogeneous Turbulence

机译:湍流动能动力学在化学反应均匀湍流中的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we investigate numerically the temporal evolution of Turbulent Kinetic Energy (TKE) of a chemically-reacting n-heptane and air mixture in statistically Homogeneous Isotropic Turbulence (HIT). Our specific focus is on the concurrent view of TKE evolution in both physical and scale (Fourier) spaces to identify the impact of reaction-induced heat release on turbulence. The simulation parameters are selected to represent the combustion characteristics of heavy hydrocarbon fuels under engine conditions. Results indicate that pressure dilatation work dominates the TKE evolution during the period of strong heat release and its dominance is attributed to the strong volumetric dilatation associated with the presence of reaction fronts in physical space. Viscous dissipation and viscous dilatation terms become much stronger with increasing heat release, primarily due to the increase in strain-rate and dilatation at the vicinity of the reaction fronts, but their magnitudes are still small compared to that of pressure dilatation work. In addition, the analysis in Fourier space shows that pressure dilatation work dominates the evolution of TKE not only in the mean, but also over a wide range of scales. The spectrum of pressure dilatation shows a power-law behavior, which is a direct consequence of the localized sheet-like reaction fronts in physical space. It is also shown that viscous dissipation spectrum initially removes kinetic energy at small scales when heat release is weak, but starts to remove kinetic energy at intermediate and later at large scales due to the presence of localized reaction fronts during the strong heat release period. More interestingly, it is observed that the inter-scale kinetic energy transfer spectrum moves energy from less dissipative scales (small scales) to scales where kinetic energy is more effectively removed by viscous dissipation work (large scales) during the period of strong heat release, which indicates possible up-scale kine
机译:在这项工作中,我们在数值上调查了在统计上均匀各向同性的各向同性湍流(命中)中的化学反应的正庚烷和空气混合物的湍流动能(TKE)的时间演变。我们的特定重点是在物理和规模(傅里叶)空间中的TKE演变的并发视图,以确定反应诱导的热释放对湍流的影响。选择模拟参数以表示发动机条件下重型烃燃料的燃烧特性。结果表明,压力扩张工作在强热释放期间主导TKE演变,其优势归因于与物理空间中的反应前线存在相关的强体积膨胀。粘性耗散和粘性扩张术语随着热量释放的增加而变得更强,主要是由于反应前沿附近的应变率和扩张的增加,但与压力扩张工作相比,它们的大小仍然较小。此外,傅里叶空间的分析表明,压力扩张工作占据了TKE的演变,不仅在平均值,而且在广泛的尺度范围内。压力扩张的光谱显示出动力法行为,这是物理空间中局部化的片状反应前沿的直接后果。还示出了当热释放较弱时,粘性耗散光谱最初在小刻度下除去动能,但由于在强热释放期间存在局部反应前线,开始在中间的中间体和后后的动能。更有趣的是,观察到级别的动能转移谱将能量从较少的耗散量表(小鳞片)移动到尺度,其中在强热释放期间通过粘性耗散工作(大尺度)更有效地去除动能,这表明可能的升级kine

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号