首页> 外文期刊>Flow, turbulence and combustion >Effect of Nozzle Exit Turbulence on the Column Trajectory and Breakup Location of a Transverse Liquid Jet in a Gaseous Flow
【24h】

Effect of Nozzle Exit Turbulence on the Column Trajectory and Breakup Location of a Transverse Liquid Jet in a Gaseous Flow

机译:喷嘴出口湍流对气流横液射流柱轨迹和分解位置的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This study examines the effect of fully developed turbulent flow at the exit of nozzle/injector on the trajectory and column breakup location of a liquid jet injected transverly into a gaseous crossflow. Liquid jet trajectory and column breakup for different nozzle geometries at different velocities of liquid jet and crossflow are analytically and experimentally Investigated. Shadowgraph imaging technique is used to determine the jet trajectory and breakup location of a transverse liquid jet in a uniform airflow. Particle image velocimetry (PIV) is used to measure the near-field velocity profile of a liquid jet discgarged into a quiescent atmosphere. The experimental results show a higher penetration and breakup height for the liquid jet ensuing from a nozzle with a smaller length to diameter ratio. This is due to the surface irregularities of the liquid column of a turbulent jet, which breaks up and consequently follows the cross airflow sooner. In order to capture the effect of turbulence, the analytical trajectory correlation developed in our previous studies is modified to account for the discharge coefficient of a nozzle. The discharge coefficient is estimated indirectly by comparing the liquid column trajectory predicted by the modified analytical correlation with that determined experimentally. The indirectly determined discharge coefficient is then used in the analytical correlation for predicting the breakup height of a transverse liquid jet. The results predicted using this approach are in good agreement with the experimental data of the present study at standard temperature and pressure (STP) test conditions.
机译:本研究检查了在经过转换为气态横流的液体喷射到气态横流的轨迹/喷射器出口处的完全发育湍流在喷嘴/喷射器的出口处的效果。在分析和实验研究不同喷嘴几何形状的液体喷射轨迹和柱分解,并进行实验研究。影子图成像技术用于确定横向液体射流的射流轨迹和分解位置在均匀的气流中。粒子图像VENOCIMETRY(PIV)用于测量液体喷射甲板成静态气氛的近场速度曲线。实验结果表明,对于具有较小长度的喷嘴,液体喷射的渗透和分离高度较高。这是由于湍流射流的液体塔的表面不规则性,其越早分解并因此沿着交叉气流遵循。为了捕获湍流的效果,我们在先前的研究中产生的分析轨迹相关性被修改以考虑喷嘴的放电系数。通过比较由实验确定的修改的分析相关预测的液柱轨迹来估计放电系数。然后将间接确定的放电系数用于分析相关性以预测横向液体射流的分解高度。使用这种方法预测的结果与标准温度和压力(STP)测试条件的本研究的实验数据吻合良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号