...
首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Identifying Material and Device Targets for a Flare Gas Recovery System Utilizing Electrochemical Conversion of Methane to Methanol
【24h】

Identifying Material and Device Targets for a Flare Gas Recovery System Utilizing Electrochemical Conversion of Methane to Methanol

机译:利用甲烷向甲醇的电化学转化,确定火炬气回收系统的材料和设备目标

获取原文
获取原文并翻译 | 示例
           

摘要

Natural gas flaring causes enormous damage to the environment, in addition to the wasted energy. The importance of this problem is highlighted by an initiative by the United Nations to end flaring by 2030. There exists an immediate need for identifying routes for converting flare into usable energy. In this study, we propose a scheme that at the core utilizes an electrochemical cell to convert methane into methanol, an easily transportable fuel. The electrochemical cell uses electricity provided by solar photovoltaics to power the electrochemical cell. We carry out a detailed techno-economic analysis of the entire system and analyze the merits and demerits of the proposed approach as compared with other flare gas recovery systems, gas-to-liquid (GTL), electricity generation with gas turbine, gas compression system, and electricity generation by solid oxide fuel cell (SOFC). The developed model shows that the current state-of-the-art materials available for different system components, proton conductor, and electrocatalysts are inadequate to make the scheme practical. We outline the minimum performance metrics, i.e., input voltage at the cell level of ~0.5 V that corresponds to an overpotential of ~1 V and a current density of 0.5 A/cm~2 that requires a proton conductor that can conduct from 10~(-1) to 10~(-2) S/cm in the temperature range of 100-250 ℃, required for the system to become financially competitive. Of note, improvements in the conductivity of proton conductors at intermediate temperatures and identification of active and selective electrocatalysts for the conversion of methane to methanol are the key parameters that determine the overall viability of the proposed scheme. We discuss the environmental impacts of the proposed scheme and provide an outlook on directions required in materials research that could meet the outlined performance metrics.
机译:天然气燃烧除了浪费能源外,还会对环境造成巨大破坏。联合国提出的一项到2030年结束燃烧的倡议突出了这一问题的重要性。迫切需要确定将火炬转化为可用能源的途径。在这项研究中,我们提出了一种方案,该方案的核心是利用电化学电池将甲烷转化为易于运输的燃料甲醇。电化学电池使用太阳能光伏电池提供的电能为电化学电池供电。我们对整个系统进行了详细的技术经济分析,并与其他火炬气回收系统,气液(GTL),燃气轮机发电,气体压缩系统相比,分析了该方法的优缺点。 ,以及固体氧化物燃料电池(SOFC)的发电。开发的模型表明,可用于不同系统组件,质子导体和电催化剂的最新材料不足以使该方案切实可行。我们概述了最低性能指标,即在〜0.5 V的电池水平上的输入电压,对应于〜1 V的过电势和0.5 A / cm〜2的电流密度,要求质子导体可以从10〜在100-250℃的温度范围内为(-1)到10〜(-2)S / cm,使该系统在经济上具有竞争力。值得注意的是,在中间温度下质子导体电导率的提高以及用于甲烷转化为甲醇的活性和选择性电催化剂的确定是决定拟议方案总体可行性的关键参数。我们讨论了拟议方案的环境影响,并对材料研究中可能满足概述性能指标的要求方向进行了展望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号