...
首页> 外文期刊>FEMS Microbiology Ecology >Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions
【24h】

Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions

机译:沉积物缺氧在变暖条件下限制微生物驱动的海草碳解物

获取原文
获取原文并翻译 | 示例

摘要

Seagrass ecosystems are significant carbon sinks, and their resident microbial communities ultimately determine the quantity and quality of carbon sequestered. However, environmental perturbations have been predicted to affect microbial-driven seagrass decomposition and subsequent carbon sequestration. Utilizing techniques including 16S-rDNA sequencing, solid-state NMR and microsensor profiling, we tested the hypothesis that elevated seawater temperatures and eutrophication enhance the microbial decomposition of seagrass leaf detritus and rhizome/root tissues. Nutrient additions had a negligible effect on seagrass decomposition, indicating an absence of nutrient limitation. Elevated temperatures caused a 19% higher biomass loss for aerobically decaying leaf detritus, coinciding with changes in bacterial community structure and enhanced lignocellulose degradation. Although, community shifts and lignocellulose degradation were also observed for rhizome/root decomposition, anaerobic decay was unaffected by temperature. These observations suggest that oxygen availability constrains the stimulatory effects of temperature increases on bacterial carbon remineralization, possibly through differential temperature effects on bacterial functional groups, including putative aerobic heterotrophs (e.g. Erythrobacteraceae, Hyphomicrobiaceae) and sulfate reducers (e.g. Desulfobacteraceae). Consequently, under elevated seawater temperatures, carbon accumulation rates may diminish due to higher remineralization rates at the sediment surface. Nonetheless, the anoxic conditions ubiquitous to seagrass sediments can provide a degree of carbon protection under warming seawater temperatures.
机译:海草生态系统是显着的碳汇,他们的驻留微生物社区最终确定碳隔离的数量和质量。然而,已经预测了环境扰动,以影响微生物驱动的海草分解和随后的碳螯合。利用包括16S-RDNA测序,固态NMR和微体分析的技术,我们测试了升高海水温度和富营养化的假设增强了海草叶片滴灌和根瘤菌/根组织的微生物分解。营养添加对海草分解具有可忽略不计的影响,表明没有营养素的限制。升高的温度导致有氧腐烂的叶片滴灌的生物量损失增加了19%,与细菌群落结构的变化相吻合,增强木质纤维素降解。虽然,对于根茎/根分解,也观察到社区变化和木质纤维素降解,但厌氧衰减不受温度影响。这些观察结果表明,氧可用性限制了温度升高对细菌碳再矿化的刺激效应,可能是通过对细菌官能团的差异温度效应,包括推定的有氧异质脱磷(例如erythrobacteraceae,杂霉菌植物)和硫酸盐还原剂(例如脱硫剂)。因此,在海水温度升高,由于沉积物表面的较高的再矿化速率,碳积累率可能会减少。尽管如此,对海草沉积物普遍存在的缺氧条件可以在温暖的海水温度下提供一定程度的碳保护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号