...
首页> 外文期刊>Global Biogeochemical Cycles >Formation and Maintenance of the GEOTRACES Subsurface‐Dissolved Iron Maxima in an Ocean Biogeochemistry Model
【24h】

Formation and Maintenance of the GEOTRACES Subsurface‐Dissolved Iron Maxima in an Ocean Biogeochemistry Model

机译:海洋生物地球化学模型中地理整地地下溶解铁马克米的形成和维护

获取原文
获取原文并翻译 | 示例

摘要

>Recent GEOTRACES transects revealed basin‐scale patterns of dissolved iron in the global oceans, providing a unique opportunity to test numerical models and to improve our understanding of the iron cycling. Subsurface maxima of dissolved iron in the upper ocean thermocline are observed in various transects, which can play an important role in regulating marine productivity due to their proximity to the surface euphotic layer. An ocean biogeochemistry model with refined parameterizations of iron cycling is used to examine the mechanisms controlling the formation and maintenance of these subsurface maxima. The model includes the representation of three iron sources including dust deposition, continental shelves, and hydrothermal vents. Two classes of organic ligands are parameterized based on the dissolved organic matter and apparent oxygen utilization. Parameterizations of particle‐dependent scavenging and desorption are included. Although the model still struggles in fully capturing the observed dissolved iron distribution, it starts reproducing some major features, especially in the main thermocline. A suite of numerical sensitivity experiments suggests that the release of scavenged iron associated with sinking organic particles forms the subsurface‐dissolved iron maxima in high‐dust regions of the Indian and Atlantic Oceans. In low‐dust regions of the Pacific basin, the subsurface‐dissolved iron extrema are sustained by inputs from the continental shelves or hydrothermal vents. In all cases, subsurface ligands produced by the remineralization of organic particles retain the dissolved iron and play a central role in the maintenance of the subsurface maxima in our model. Thus, the parameterization of subsurface ligands has a far‐reaching impact on the representation of global iron cycling and biological productivity in ocean biogeochemistry models.
机译:

最近的地脉座段横断面揭示了全球海洋中溶解铁的盆地模式,提供了独特的机会测试数值模型,提高我们对铁骑行的理解。在各种横频中观察到上海洋热量下溶解铁的溶解铁的地下最大值,这可以在调节由于其对表面Euphotic层的邻近来调节海洋生产率的重要作用。使用铁循环参数化的海洋生物地球化学模型用于检查控制这些地下最大值的形成和维护的机制。该模型包括三种铁源的表示,包括灰尘沉积,欧式搁板和水热通风口。基于溶解的有机物和表观氧利用,参数化两类有机配体。包括粒子相关的清除和解吸的参数化。虽然模型仍然陷入完全捕获观察到的溶解铁分布,但它开始再现一些主要特征,特别是在主要的热量下。一套数值敏感性实验表明,与沉没有机颗粒相关的清除铁的释放形成了印度和大西洋的高尘埃地区的地下溶解的铁马克米。在太平洋盆地的低尘埃地区,地下溶解的铁极值由欧式架子或水热通风口的输入来维持。在所有情况下,通过有机颗粒的再矿化产生的地下配体保留了溶解的铁,并在模型中维持地下最大值的维护中起着核心作用。因此,地下配体的参数化对海洋生物地球化学模型的全球铁循环和生物生产力的表示产生了深远的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号