首页> 外文期刊>GPS Solutions >Scaling earthquake magnitude in real time with high-rate GNSS peak ground displacement from variometric approach
【24h】

Scaling earthquake magnitude in real time with high-rate GNSS peak ground displacement from variometric approach

机译:实时缩放地震幅度,具有从尺寸方法的高速GNSS峰接地位移

获取原文
获取原文并翻译 | 示例
           

摘要

Peak ground displacement (PGD) derived from high-rate Global Navigation Satellite System (GNSS) can be used to determine, i.e., the estimate or scale the earthquake magnitude in real time without magnitude saturation experienced by seismic sensors at large earthquakes. Compared with relative positioning or Precise Point Positioning (PPP), the variometric approach can calculate station velocity using the broadcast ephemeris and avoiding estimating phase ambiguities. By integration, velocities can be translated into displacements. However, an inaccurate broadcast ephemeris might cause integrated displacements to show nonlinear drifts. Recently developed real-time orbit and clock products used by real-time PPP have higher accuracy and can also be employed by the variometric approach. We evaluate the performance of the variometric approach on magnitude scaling using high-rate GNSS data collected during the 2019M(w)7.1 Ridgecrest earthquake, the 2016M(w)7.8 New Zealand earthquake, and the 2017M(w)6.5 Jiuzhaigou earthquake. The results indicate that a spatial filter cannot correct nonlinear drifts of integrated displacements completely and scaled magnitudes are not stable when the broadcast ephemeris is used. While using the Centre National d'Etudes Spatiales (CNES) real-time ephemeris, we find both the spatial filter and linear filter can correct drifts well and scaled magnitudes have the same accuracy as those of PPP. While comparing different GNSS systems, we find that BDS is superior to GPS and GLONASS in the case of the Jiuzhaigou earthquake because BDS has a better satellite geometry in this region. Compared with single GPS, multi-GNSS can improve satellite geometry and provide more precise seismic displacements when broadcast ephemeris and low sampling precise clocks are used by the variometric method.
机译:源自高速速率全球导航卫星系统(GNSS)的峰接地位移(PGD)可用于确定,即实时估计或缩放地震幅度,无需大地震的地震传感器所经历的幅度饱和度。与相对定位或精确点定位(PPP)相比,仪器方法可以使用广播星历来计算站速度并避免估计相位歧义。通过集成,可以将速度转换成位移。然而,不准确的广播星历可能导致集成的位移来显示非线性漂移。最近开发的实时PPP使用的实时轨道和时钟产品具有更高的精度,也可以通过尺寸方法采用。我们评估了在2019米(W)7.1 RidGecrest地震期间收集的高速GNSS数据在数级缩放上进行了尺寸缩放的性能,2016米(W)7.8新西兰地震,以及2017米(W)6.5九寨沟地震。结果表明,当使用广播星历时,空间滤波器不能完全校正集成位移的非线性漂移,并且缩放幅度不稳定。在使用CENTER NICETION D'ETUDES SPATIALES(CNES)实时星历中,我们发现空间过滤器和线性滤波器都可以纠正漂移良好,并且缩放的大小具有与PPP相同的精度。在比较不同的GNSS系统的同时,我们发现BDS在九寨沟地震的情况下优于GPS和Glonass,因为BDS在该地区具有更好的卫星几何形状。与单个GPS相比,多GNSS可以改善卫星几何形状,并在播放星历和低采样精确时钟时提供更精确的地震位移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号