...
首页> 外文期刊>Green chemistry >Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries
【24h】

Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries

机译:具有可调谐层间距离的S / N型碳纳米片的制备高速钠离子电池

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The conventional strategies for obtaining S/N-codoped carbon materials suffer from a series of problems caused by their complicated experimental procedures. Here, S, N-codoped carbon nanosheets were firstly prepared by a solvent-free one-pot method, displaying an ultra-thin sheet-like structure, a tunable interlayer distance ranging from 0.37 nm to 0.41 nm, and a large surface area up to 809 m(2) g(-1). When they were used as an anode for sodium-ion batteries (SIBs), an outstanding sodium-ion storage performance of 380 mA h g(-1) was acquired at 100 mA g(-1), which can be attributed to the expanded interlayer distance caused by the introduction of the large covalent radius-sulfur. The initial coulombic efficiency improved to 60.9%, which may benefit from N-doping. Most importantly, an excellent rate capability of similar to 178 mA h g(-1) was observed at a current density of 5 A g(-1) after 5000 cycles, which is among best of the state-of-theart carbon-based SIBs. Interestingly, the morphology of the obtained carbon materials can be tuned from bulk to flake by adjusting the sulfur content or temperature. Given this, this work provides a new method to construct co-doped carbon (especially tri-doped and multi-doped carbon) and shows that the strategy of co-doping of heteroatoms can effectively optimize the nano/microstructure and enhance the rate capability of the carbon materials.
机译:获得S / N型碳材料的常规策略患有由其复杂的实验程序引起的一系列问题。此处,首先通过无溶剂的单罐方法制备S,N-编号碳纳米片,显示超薄片状结构,可调谐层间距离范围为0.37nm至0.41nm,以及大表面积到809 m(2)g(-1)。当它们被用作钠离子电池(SIB)的阳极时,在100mA g(-1)时获得了380mA Hg(-1)的优异钠离子储存性能,其可归因于膨胀的中间层引进大型共价半径硫引起的距离。初始库仑效率提高至60.9%,可从N掺杂中受益。最重要的是,在5000个循环后,在5000次循环之后的电流密度为5A g(-1)的优异速率能力,这是最佳的碳基SIBs中。有趣的是,通过调节硫含量或温度,可以将所得碳材料的形态从体积调节以剥落。鉴于这一点,这项工作提供了一种构建共掺杂碳(特别是三掺杂和多掺杂碳)的新方法,并表明杂原子的共掺杂策略可以有效地优化纳米/微观结构并增强速率能力碳材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号