...
首页> 外文期刊>Green chemistry >Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres
【24h】

Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres

机译:Lytic多糖单氧化酶(LPMO)介导的超细纤维素纳米纤维的生产来自奥基利的软木纤维

获取原文
获取原文并翻译 | 示例
           

摘要

The production of cellulose nanofibres (CNFs) typically requires harsh chemistry and strong mechanical fibrillation, both of which have negative environmental impacts. A possible solution is offered by lytic polysaccharide monooxygenases (LPMOs), oxidative enzymes that boost cellulose fibrillation. Although the role of LPMOs in oxidative modification of cellulosic substrates is rather well established, their use in the production of cellulose nanomaterials is not fully explored, and the effect of the carbohydrate-binding module (CBM) on nanofibrillation has not yet been reported. Herein, we studied the activity of two LPMOs, one of which was appended to a CBM, on delignified softwood fibres for green and energy-efficient production of CNFs. The CNFs were used to prepare cellulose nanopapers, and the structure and properties of both nanofibres and nanopapers were determined. Both enzymes were able to facilitate nanocellulose fibrillation and increase the colloidal stability of the produced CNFs. However, the CBM-lacking LPMO was more efficient in introducing carboxyl groups (0.53 mmol g(-1)) on the cellulose fibre surfaces and releasing CNFs with a thinner width (4.3 +/- 1.5 nm) from delignified spruce fibres than the modular LPMO (carboxylate content of 0.38 mmol g(-1) and nanofibre width of 6.7 +/- 2.5 nm) through LPMO-pretreatment followed by mild homogenisation. The prepared nanopapers showed improved mechanical properties (tensile strength of 262 MPa and modulus of 16.2 GPa) compared to those obtained by conventional CNF preparation methods, demonstrating the potential of LPMOs as green alternatives for cellulose nanomaterial preparation.
机译:纤维素纳米纤维(CNFS)的生产通常需要苛刻的化学和强机械颤动,这两者都具有负面的环境影响。通过裂解多糖单氧基酶(LPMOS),氧化酶提供一种可能的溶液,促进纤维素纤维素。虽然LPMOS在纤维素底物的氧化修饰中的作用是相当明确的,但它们在生产纤维素纳米材料中的使用尚未得到完全探索,并且尚未报告碳水化合物结合模块(CBM)对纳米纤维的影响。在此,我们研究了两种LPMOS的活性,其中一项是CBM的CNM,用于绿色和节能生产的CNFS。 CNFS用于制备纤维素纳米粉粉末,测定纳米纤维和纳米粉粉的结构和性质。两种酶都能够促进纳米纤维素纤维化并增加所产生的CNF的胶体稳定性。然而,在纤维素纤维表面上引入羧基(0.53mmol g(-1))并释放来自稀释的宽度(4.3 +/- 1.5nm)的CBM缺失的LPMO更有效,而不是来自莫斯科的云杉纤维的CNF LPMO(羧酸盐含量为0.38mmol g(-1)和纳米纤维宽度为6.7 +/- 2.5nm),通过LPMO-预处理,然后温和均质化。与通过常规CNF制备方法获得的那些,制备的纳米粉刺纳米粉刺率为改善的机械性能(262MPa和262MPa和26.2GPa的模量),证明了LPMOS作为纤维素纳米材料制剂的绿色替代品的潜力。

著录项

  • 来源
    《Green chemistry》 |2019年第21期|共10页
  • 作者单位

    AlbaNova Univ Ctr Div Glycosci Dept Chem KTH Royal Inst Technol SE-10691 Stockholm Sweden;

    AlbaNova Univ Ctr Div Glycosci Dept Chem KTH Royal Inst Technol SE-10691 Stockholm Sweden;

    AlbaNova Univ Ctr Div Glycosci Dept Chem KTH Royal Inst Technol SE-10691 Stockholm Sweden;

    KTH Royal Inst Technol Wallenberg Wood Sci Ctr Dept Fiber &

    Polymer Technol SE-10044 Stockholm Sweden;

    AlbaNova Univ Ctr Div Glycosci Dept Chem KTH Royal Inst Technol SE-10691 Stockholm Sweden;

    KTH Royal Inst Technol Wallenberg Wood Sci Ctr Dept Fiber &

    Polymer Technol SE-10044 Stockholm Sweden;

    AlbaNova Univ Ctr Div Glycosci Dept Chem KTH Royal Inst Technol SE-10691 Stockholm Sweden;

    AlbaNova Univ Ctr Div Glycosci Dept Chem KTH Royal Inst Technol SE-10691 Stockholm Sweden;

    AlbaNova Univ Ctr Div Glycosci Dept Chem KTH Royal Inst Technol SE-10691 Stockholm Sweden;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境化学;数理科学和化学;化学工业废物处理与综合利用;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号