首页> 外文期刊>Global change biology >Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw
【24h】

Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw

机译:非线性CO2通量对7年的实验诱导的永久冻土解冻的反应

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (Reco), gross primary productivity (GPP), and net summer CO2 storage (NEE). Over 7 years Reco, GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, Reco, GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed Reco, GPP, and NEE. However Reco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher Reco in deeply thawed areas during summer months was balanced by GPP. Summer CO2 flux across treatments fit a single quadratic relationship that captured the functional response of CO2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO2 flux: plant growth and water table dynamics. Nonsummer Reco models estimated that the area was an annual CO2 source during all years of observation. Nonsummer CO2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO2 source.
机译:随着永久冻土的解冻暴露于微生物分解的巨大储存,预计北极变暖将增加全球温室气体浓度。 Pumafrost解冻还刺激了植物生长,这可能抵消C损失。在潮湿的酸性苔原中使用7年的实验空气和土壤变暖的数据,我们表明土壤变暖对CO2助熔剂的影响更强烈。土壤变暖引起快速Permafrost解冻和增加生态系统呼吸(RECO),总初级生产率(GPP)和净夏季CO2存储(NEE)。超过7年的RECO,GPP和NEE也在控制中增加(即,环境图),但是通过控制区域的慢速解冻可以解释这种变化。尽管解冻的不同速度,但在整个治疗中,彻底解冻的初始阶段,RECO,GPP和NEE在所有治疗中都会在所有治疗中升高。由于土壤升温的解冻继续线性地升高,地面沉降产生饱和的微量和抑制reco,gpp和nee。然而,Reco和GPP在具有大型爱泼疱疹生物量的地区仍然很高。总的来说,Nee通过解冻而增加,但与植物生物质比解冻更强烈地相关,表明在夏季的深度解冻地区的较高reco被GPP平衡。夏季CO2跨治疗的助焊剂适合单一的二次关系,捕获CO2通量的功能响应,水桌深度和植物生物质。这些结果证明了间接解冻对二氧化碳助焊剂的重要性:植物生长和水表动态。 Nonsummer Reco Models估计,该地区在所有年内观察期间是一年一度的二氧化碳来源。 Nonsummer Co2损失在较温暖,夏季GPP的较高越来越大的土壤超过了夏季GPP的上涨,并将苔原冻结为一年一度的二氧化碳来源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号