...
首页> 外文期刊>Global change biology >Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands
【24h】

Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands

机译:新型微生物群落组成和碳生物地球化学随着时间的推移在湿地盐水侵扰之后出现

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Sea level rise and changes in precipitation can cause saltwater intrusion into historically freshwater wetlands, leading to shifts in microbial metabolism that alter greenhouse gas emissions and soil carbon sequestration. Saltwater intrusion modifies soil physicochemistry and can immediately affect microbial metabolism, but further alterations to biogeochemical processing can occur over time as microbial communities adapt to the changed environmental conditions. To assess temporal changes in microbial community composition and biogeochemical activity due to saltwater intrusion, soil cores were transplanted from a tidal freshwater marsh to a downstream mesohaline marsh and periodically sampled over 1 year. This experimental saltwater intrusion produced immediate changes in carbon mineralization rates, whereas shifts in the community composition developed more gradually. Salinity affected the composition of the prokaryotic community but did not exert a strong influence on the community composition of fungi. After only 1 week of saltwater exposure, carbon dioxide production doubled and methane production decreased by three orders of magnitude. By 1 month, carbon dioxide production in the transplant was comparable to the saltwater controls. Over time, we observed a partial recovery in methane production which strongly correlated with an increase in the relative abundance of three orders of hydrogenotrophic methanogens. Taken together, our results suggest that ecosystem responses to saltwater intrusion are dynamic over time as complex interactions develop between microbial communities and the soil organic carbon pool. The gradual changes in microbial community structure we observed suggest that previously freshwater wetlands may not experience an equilibration of ecosystem function until long after initial saltwater intrusion. Our results suggest that during this transitional period, likely lasting years to decades, these ecosystems may exhibit enhanced greenhouse gas production through greater soil respiration and continued methanogenesis.
机译:海平面升高和降水变化会导致盐水侵入到历史上淡水湿地中,导致在微生物代谢中变化,改变温室气体排放和土壤碳封存。盐水侵入改变土壤物​​理化学,可以立即影响微生物代谢,但随着微生物社区适应改变的环境条件,可以随着时间的推移而进一步改变生物地球化学处理。为了评估由于咸水侵扰引起的微生物群落组成和生物地球化学活性的时间变化,土壤核从潮汐淡水沼泽移植到下游梅西氏菌沼泽,并在1年内定期采样。该实验咸水入侵产生了碳矿化率的立即变化,而在社区组成中的转变更逐渐发展。盐度影响了原核群落的组成,但对真菌的社区成分产生了强烈影响。在仅1周的咸水暴露后,二氧化碳生产加倍,甲烷产量下降三个数量级。 1个月,移植中的二氧化碳产生与盐水控制相当。随着时间的推移,我们观察到甲烷产生的部分回收,这与三种促进型甲烷的相对丰度的增加强烈相关。我们的结果表明,随着微生物社区和土壤有机碳库之间的复杂相互作用,生态系统对咸水侵入的生态系统反应是动态的。我们观察到的微生物群落结构的逐步变化表明,前面的淡水湿地可能不会经历生态系统功能的平衡,直至初始盐水侵扰后长。我们的研究结果表明,在这种过渡时期,可能持续年数到几十年,这些生态系统可能通过更大的土壤呼吸和持续的甲烷化产生增强的温室气产物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号