首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >3D traveltime computation for quasi-P-wave in orthorhombic media using dynamic programming
【24h】

3D traveltime computation for quasi-P-wave in orthorhombic media using dynamic programming

机译:使用动态编程的正交介质中准p波的3D旅行时间计算

获取原文
获取原文并翻译 | 示例
           

摘要

A fractured area, such as a fault area, usually induces orthorhombic anisotropy. Ignoring orthorhombic anisotropy may degrade the subsurface image by creating a well mistie and blurring the image. Traveltime computation is essential for many processing techniques, such as depth imaging and tomography. Solving the ray-tracing system and eikonal equation are two popular methods for traveltime computation in isotropic media. However, because the ray-tracing system becomes complex and the eikonal equation becomes highly nonlinear, their applications in orthorhombic media become complex. We have developed an alternative 3D traveltime computation method in orthorhombic media based on dynamic programming. To avoid solving the complex ray-tracing system and nonlinear eikonal equation, it adopts an explicitly expressed group velocity from the moveout approximation to describe the propagation of the wavepath and computes the traveltime by Fermat's principle. Similar to depth extrapolation, it computes the traveltime from one depth to the next depth and does not suffer from a shadow zone. Besides, three strategies of traveltime computation are proposed to deal with different geologic scenarios. Because classic dynamic programming (i.e., the first strategy) computes all possible wavepaths (i.e., 24 wavepaths) across one spatial location, it may be computationally intensive. Based on the idea of wavefield decomposition (e.g., upgoing and downgoing), the second and third strategies simplify the traveltime computation and reduce the computational cost. Numerical examples on the vertical and tilted orthorhombic models indicate that the traveltime contour obtained by our method matches well with the wavefront extrapolated from the wave equation. Our method can be applied in depth imaging and tomography.
机译:裂缝区域,如断层区域,通常会诱导正交各向异性。忽略矫形晶片各向异性可以通过创建井下薄雾并模糊图像来降低地下图像。旅行时间计算对于许多处理技术至关重要,例如深度成像和断层扫描。求解光线跟踪系统和eikonal方程是各向同性介质中的旅行时间计算的两个流行方法。然而,由于光线跟踪系统变得复杂并且Eikonal方程变得高度非线性,因此它们在正交介质中的应用变得复杂。基于动态规划,我们在正交介质中开发了一种替代的3D旅行时间计算方法。为避免求解复杂的射线追踪系统和非线性eikonal方程,它采用了从偏移近似的明确表达的组速度来描述波纹的传播并通过Fermat的原理计算旅行时间。类似于深度外推,它将行程从一个深度计算到下一个深度,并且不会遭受阴影区域。此外,提出了三种旅行时间计算策略来处理不同的地质情景。因为经典动态编程(即,第一个策略),所以在一个空间位置计算所有可能的波段(即,24波坡),所以它可能是计算密集的。基于波场分解的思想(例如,上行和下行),第二和第三策略简化了旅行时间计算并降低了计算成本。垂直和倾斜的矫正模型上的数值示例表明,通过我们的方法获得的旅行时间轮廓与波前从波方程外推出的波前匹配。我们的方法可以应用于深度成像和断层扫描。

著录项

  • 来源
  • 作者单位

    Chengdu Univ Technol State Key Lab Oil &

    Gas Reservoir Geol &

    Exploita Chengdu Sichuan Peoples R China;

    Chengdu Univ Technol State Key Lab Oil &

    Gas Reservoir Geol &

    Exploita Chengdu Sichuan Peoples R China;

    Tongji Univ Sch Ocean &

    Earth Sci WPI Shanghai Peoples R China;

    China Univ Geosci Hubei Subsurface Multiscale Imaging Key Lab Inst Geophys &

    Geomat Wuhan Hubei Peoples R China;

    Chengdu Univ Technol State Key Lab Oil &

    Gas Reservoir Geol &

    Exploita Chengdu Sichuan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号