...
首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Effect of brine-CO2 fracture flow on velocity and electrical resistivity of naturally fractured tight sandstones
【24h】

Effect of brine-CO2 fracture flow on velocity and electrical resistivity of naturally fractured tight sandstones

机译:盐水-CO2断裂流动对天然骨折砂岩速度和电阻率的影响

获取原文
获取原文并翻译 | 示例

摘要

Fracture networks inside geologic CO2 storage reservoirs can serve as the primary fluid flow conduit, particularly in low-permeability formations. Although some experiments focus on the geophysical properties of brine-and CO2-saturated rocks during matrix flow, geophysical monitoring of fracture flow when CO2 displaces brine inside the fracture seems to be overlooked. We have conducted laboratory geophysical monitoring of fluid flow in a naturally fractured tight sandstone during brine and liquid CO2 injection. For the experiment, the low-porosity, lowpermeability, naturally fractured core sample from the Triassic De Geerdalen Formation was acquired from the Longyearbyen CO2 storage pilot at Svalbard, Norway. Stress dependence, hysteresis, and the influence of fluid-rock interactions on fracture permeability were investigated. The results suggest that in addition to stress level and pore pressure, mobility and fluid type can affect fracture permeability during loading and unloading cycles. Moreover, the fluid-rock interaction may impact volumetric strain and consequently fracture permeability through swelling and dry out during water and CO2 injection, respectively. Acoustic velocity and electrical resistivity were measured continuously in the axial direction and three radial levels. Geophysical monitoring of fracture flow revealed that the axial P-wave velocity and axial electrical resistivity are more sensitive to saturation change than the axial S-wave, radial P-wave, and radial resistivity measurements when CO2 was displacing brine, and the matrix flow was negligible. The marginal decreases of acoustic velocity (maximum 1.6% for axial V P) compared with the 11% increase in axial electrical resistivity suggest that in the case of dominant fracture flow within the fractured tight reservoirs, the use of electrical resistivity methods have a clear advantage compared with seismic methods to monitor CO2 plume. The knowledge learned from such experiments can be useful
机译:地质二氧化碳储存储存器内部的裂缝网络可以用作主要流体流动导管,特别是在低渗透性形成中。虽然一些实验专注于在基质流动期间盐水和二氧化碳饱和岩石的地球物理性质,当CO2在骨折内盐水内盐水似乎被忽略时,骨折流动的地球物理监测似乎被忽略了。在盐水和液体CO2注射期间,我们在天然碎裂的紧密砂岩中进行了对流体流动的实验室地球物理监测。对于实验,从挪威Svalbard的Longyearbyen Co2储存飞行员获得了低孔隙率,低磷酸性,天然裂缝的核心样品。研究了应力依赖性,滞后和流体岩相互作用对裂缝渗透性的影响。结果表明,除了应力水平和孔隙压力之外,迁移率和流体类型可以在装载和卸载循环期间影响骨折渗透性。此外,流体岩石相互作用可能会影响体积菌株并因此通过溶胀和干燥在水和二氧化碳注射期间干燥渗透性。在轴向和三个径向水平中连续测量声速度和电阻率。断裂流动的地球物理监测显示,当CO 2位移盐水时,轴向p波速度和轴向电阻率比轴向S波,径向P波和径向电阻率测量更敏感。微不足道。与轴向电阻率的11%增加相比,声速度的边际降低(轴向VP的最大1.6%)表明,在骨折紧密储层内的主要断裂流动的情况下,电阻方法的使用比较了明显的优势用地震方法监测二氧化碳羽毛。从这些实验中学到的知识可能是有用的

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号