...
首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >3D frequency-domain elastic wave modeling with the spectral element method using a massively parallel direct solver
【24h】

3D frequency-domain elastic wave modeling with the spectral element method using a massively parallel direct solver

机译:3D频率域弹性波建模与谱元法使用大规模并行直接求解器

获取原文
获取原文并翻译 | 示例

摘要

Complex topography, the free-surface boundary condition, and anelastic properties of media should be accounted for in the frame of onshore geophysical prospecting imaging, such as full-waveform inversion (FWI). In this context, an accurate and efficient forward-modeling engine is mandatory. We have performed 3D frequency-domain anisotropic elastic wave modeling by using the highly accurate spectral element method and a sparse multifrontal direct solver. An efficient approach similar to computing the matrix-vector product in the time domain is used to build the matrix. We validate the numerical results by comparing with analytical solutions. A parallel direct solver, the sparse direct multifrontal massively parallel solver (MUMPS), is used to solve the linear system. We find that a hybrid implementation of message passing interface and open multiprocessing is more efficient in flops and memory cost. The influence of the deformed mesh, free-surface boundary condition, and heterogeneity of media on MUMPS performance is negligible. Complexity analysis suggests that the memory complexity of MUMPS agrees with the theoretical order O(N-4) (or O(N-3.5) with an efficient matrix reordering method) for an N-3 grid when nontrivial topography is considered. With the available resources, we conduct a moderate scale modeling with a subset of the SEAM Phase II Foothills model, where 60 wavelengths in the x-axis are propagated. Computing one gradient of FWI based on this model using the frequency-domain modeling is shown to require similar or fewer computational resources than what would be required for a time-domain solver, depending on the number of sources, while larger memory is necessary. An estimation of the increasing trend indicates that approximately 20 Tb of memory would be required for a 50 x 50 x 50 wavelength modeling. The limit of MUMPS scalability hinders the application to larger scale applications.
机译:复杂的地形,自由表面边界条件和介质的Anelastic属性应计入陆上地球物理勘探成像的框架,例如全波形反转(FWI)。在这种情况下,强制性高效的前进建模引擎是强制性的。我们通过使用高精度的频谱元件方法和稀疏的多逆向求解器进行了3D频域各向异性弹性波建模。一种类似于计算时域中的矩阵矢量产品的有效方法用于构建矩阵。我们通过与分析解决方案进行比较来验证数值结果。并行直接求解器,稀疏的直接多逆转数大规模平行求解器(腮腺)用于解决线性系统。我们发现消息传递接口和开放式多处理的混合实现在拖鞋和内存成本中更有效。变形网格,自由表面边界条件和培养基的异质性对腮腺炎性能的影响可忽略不计。复杂性分析表明,当考虑非学生地形时,腮腺量的内存复杂性与具有有效矩阵重新排序方法的理论阶O(N-3.5)(或O(n-3.5)),当考虑不动脉地形时,N-3网格。利用可用的资源,我们使用缝阶段II山麓模型的子集进行适度比例建模,其中X轴中的60个波长传播。基于该模型计算一个FWI的一个梯度,使用频域建模,需要比时域求解器的计算资源相似或更少,这取决于源的数量,而需要更大的内存。增加趋势的估计表明,对于50×50×50波长建模,需要大约20 TB的存储器。 Mumps可伸缩性的极限阻碍了应用于更大的尺度应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号