首页> 外文期刊>Geobiology >The kinetics of siderophore-mediated olivine dissolution
【24h】

The kinetics of siderophore-mediated olivine dissolution

机译:阳光介导的橄榄石溶解的动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Silicate minerals represent an important reservoir of nutrients at Earth's surface and a source of alkalinity that modulates long-term geochemical cycles. Due to the slow kinetics of primary silicate mineral dissolution and the potential for nutrient immobilization by secondary mineral precipitation, the bioavailability of many silicate-bound nutrients may be limited by the ability of micro-organisms to actively scavenge these nutrients via redox alteration and/or organic ligand production. In this study, we use targeted laboratory experiments with olivine and the siderophore deferoxamine B to explore how microbial ligands affect nutrient (Fe) release and the overall rate of mineral dissolution. Our results show that olivine dissolution rates are accelerated in the presence of micromolar concentrations of deferoxamine B. Based on the non-linear decrease in rates with time and formation of a Fe3+-ligand complex, we attribute this acceleration in dissolution rates to the removal of an oxidized surface coating that forms during the dissolution of olivine at circum-neutral pH in the presence of O-2 and the absence of organic ligands. While increases in dissolution rates are observed with micromolar concentrations of siderophores, it remains unclear whether such conditions could be realized in natural environments due to the strong physiological control on microbial siderophore production. So, to contextualize our experimental results, we also developed a feedback model, which considers how microbial physiology and ligand-promoted mineral dissolution kinetics interact to control the extent of biotic enhancement of dissolution rates expected for different environments. The model predicts that physiological feedbacks severely limit the extent to which dissolution rates may be enhanced by microbial activity, though the rate of physical transport modulates this limitation.
机译:硅酸盐矿物代表地球表面的营养素和碱度来源的重要储层,可调节长期地球化学循环。由于初级硅酸盐矿物溶解的缓慢和通过次级矿物沉淀的营养固定的可能性,许多硅酸盐结合的营养物的生物利用度可能受到微生物能力通过氧化还原改变和/或有机配体生产。在这项研究中,我们使用橄榄石和Siderophore Deferoxamine B的有针对性的实验室实验来探讨微生物配体如何影响营养(Fe)释放和矿物溶解的总体速率。我们的结果表明,在脱氧氧胺B的微摩尔浓度存在下加速橄榄石溶出速率。基于与时间和形成Fe3 + -Ligand复合物的速率的非线性降低,我们将这种加速度归因于溶解率以去除在o-2存在下在循环中性pH下在橄榄石的溶解期间形成的氧化表面涂层,并且没有有机配体的情况。虽然通过微摩尔浓度的施用率观察到溶解率的增加,但仍然尚不清楚由于对微生物生产的强烈生理控制而在天然环境中可以实现这种条件。因此,为了上下文化我们的实验结果,我们还开发了一种反馈模型,其考虑了微生物生理学和促进的矿物溶解动力学与不同环境预期的溶解率的生物增强程度的程度相互作用。该模型预测,生理反馈严重限制了微生物活性可以增强溶出速率的程度,尽管物理运输速率调节这种限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号