首页> 外文期刊>Genes to cells : >Mutational analysis of the C-terminal cytoplasmic domain of FlhB, a transmembrane component of the flagellar type III protein export apparatus in Salmonella
【24h】

Mutational analysis of the C-terminal cytoplasmic domain of FlhB, a transmembrane component of the flagellar type III protein export apparatus in Salmonella

机译:FLHB的C末端细胞质结构域的突变分析,沙门氏菌鞭毛型III型蛋白质出口装置的跨膜组分

获取原文
获取原文并翻译 | 示例
       

摘要

The flagellar protein export apparatus switches its substrate specificity when hook length has reached approximately 55 nm in Salmonella. The C-terminal cytoplasmic domain of FlhB (FlhB(C)) is involved in this switching process. FlhB(C) consists of FlhB(CN) and FlhB(CC) polypeptides. FlhB(CC) has a flexible C-terminal tail (FlhB(CCT)). FlhB(CC) is involved in substrate recognition, and conformational rearrangements of FlhB(CN)-FlhB(CC) boundary are postulated to be required for the export switching. However, it remains unknown how it occurs. To clarify this question, we carried out mutational analysis of highly conserved residues in FlhB(C). The flhB(E230A) mutation reduced the FlhB function. The flhB(E11S) mutation restored the protein transport activity of the flhB(E230A) mutant to the wild-type level, suggesting that the interaction of FlhB(CN) with the extreme N-terminal region of FlhB is required for flagellar protein export. The flhB(R320A) mutation affected hydrophobic interaction networks in FlhB(CC), thereby increasing insolubility of FlhB(C). The R320A mutation also affected the export switching, thereby producing longer hooks with the filament attached. C-terminal truncations of FlhB(CCT) induced a conformational change of FlhB(CN)-FlhB(CC) boundary, resulting in a loose hook length control. We propose that FlhB(CCT) may control conformational arrangements of FlhB(CN)-FlhB(CC) boundary through the hydrophobic interaction networks of FlhB(CC).
机译:当钩长度在沙门氏菌达到约55nm时,鞭毛蛋白出口装置会改变其基质特异性。 FLHB的C末端细胞质结构域(FLHB(C))参与该开关过程。 FLHB(C)由FLHB(CN)和FLHB(CC)多肽组成。 FLHB(CC)具有柔性C末端尾部(FLHB(CCT))。 FLHB(CC)涉及基板识别,并将FLHB(CN)-FLHB(CC)边界的构象重排成为出口切换所需的假设。但是,它仍然是如何发生的。为了澄清这个问题,我们对FLHB(C)中高度保守的残留物进行了突变分析。 FLHB(E230A)突变降低了FLHB功能。 FLHB(E11s)突变将FLHB(E230A)突变体的蛋白质转运活性恢复到野生型水平,表明FLHB(CN)与FLHB的极端N末端区域的相互作用是鞭毛蛋白的出口所必需的。 FLHB(R320A)突变在FLHB(CC)中影响了疏水相互作用网络,从而增加了FLHB(C)的不溶性。 R320A突变也影响了出口切换,从而产生长丝的钩子。 FLHB(CCT)的C末端截短诱导FLHB(CN)-FLHB(CC)边界的构象变化,从而产生松散的钩长控制。我们提出FLHB(CCT)可以通过FLHB(CC)的疏水相互作用网络来控制FLHB(CN)-FLHB(CC)边界的构象布置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号