首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the Moon
【24h】

Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the Moon

机译:月球岩浆海洋的结晶与月球的原始披风区分

获取原文
获取原文并翻译 | 示例
           

摘要

We present crystallization experiments on silicate melt compositions related to the lunar magma ocean (LMO) and its evolution with cooling. Our approach aims at constraining the primordial internal differentiation of the Moon into mantle and crust. We used graphite capsules in piston cylinder (1.35-0.80 GPa) and internally-heated pressure vessels (0.50 GPa), over 1580-1020 degrees C, and produced melt compositions using a stepwise approach that reproduces fractional crystallization. Using our new experimental dataset, we define phase equilibria and equations predicting the saturation of liquidus phases, magma temperature, and crystal/melt partitioning for major elements relevant for the crystallization of the LMO. These empirical expressions are then used in a forward model that predicts the liquid line of descent and crystallization products of a 600 km-thick magma ocean. Our results show that the effects of changes in the bulk composition on the sequence of crystallization are minor. Our experiments also show the crystallization of a silica phase at ca. 1080 degrees C and we suggest that this phase might have contributed to the building of the lower anorthositic crust. Calculation of crustal thickness clearly shows that a thin crust similar to that revealed by GRAIL cannot have been generated through solidification of whole Moon magma ocean. We discuss the role of magma ocean depth, trapped liquid fraction (with implication for the alumina budget in the mantle and the crust), and the efficiency of plagioclase flotation in producing the thin crust. We also constrain the potential range of pyroxene compositions that could be incorporated into the crust and show that delayed crustal building during ca. 4% LMO crystallization on the nearside of the Moon may explain the dichotomy for Mg-number. Finally, we show that the LMO can produce magnesian anorthosites during the first stages of plagioclase crystallization. (C) 2018 Elsevier Ltd. All rights reserved.
机译:我们将结晶实验呈现出与月球岩浆海洋(LMO)相关的硅酸盐熔体组合物及其冷却进化。我们的方法旨在将月球的原始内部分化为披风和地壳。我们在活塞缸(1.35-0.80GPa)和内加热的压力容器(& 0.50gPa)中使用了石墨胶囊,并使用逐步方法产生熔体组合物,其再现分数结晶。使用我们的新实验数据集,我们定义了预测液相阶段,岩浆温度和晶体/熔体分配的相位平衡和方程,用于对LMO结晶相关的主要元素。然后将这些经验表达用于前向模型中,预测600公里厚的岩浆海洋的下降和结晶产物的液体线。我们的研究结果表明,批量组合物在结晶序列中的变化的影响很小。我们的实验还显示了在CA的二氧化硅相结晶。 1080℃,我们建议该阶段可能导致建筑物的低正性地壳。地壳厚度的计算清楚地表明,通过整个月亮岩浆的凝固不能产生类似于Grail揭示的薄地壳。我们讨论了岩浆海洋深度,捕获的液体分数(含有地幔中的氧化铝预算的含有氧化铝预算)的作用,以及Plagioclase Flotation在生产薄壳中的效率。我们还限制了可以掺入地壳中的辉石组合物的潜在范围,并显示在CA期间的延迟的地壳建筑。在月球近侧的4%LMO结晶可以解释MG数的二分法。最后,我们表明LMO可以在Plagioclase结晶的第一阶段产生氧化镁Anaorthosites。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号