首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Iron uptake and magnetite biomineralization in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1: An iron isotope study
【24h】

Iron uptake and magnetite biomineralization in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1: An iron isotope study

机译:磁通术细菌磁桥磁株菌株株AMM-1中的铁吸收和磁铁矿生物矿化:铁同位素研究

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetotactic bacteria (MTB) produce intracellular, membrane- bounded magnetite [ Fe(II) Fe(III)(2)O-4] crystals in a genetically controlled way. They are ubiquitous in aquatic environments, and have been proposed to represent some of the most ancient biomineralizing organisms on Earth. Although tremendous advances have been made in constraining the mechanisms of magnetite formation in MTB, the precise biomineralization pathways are still a matter of debate. To further constrain the processes of Fe uptake and magnetite precipitation in MTB, Fe stable isotope measurements were carried out with the magnetotactic strain AMB-1 cultivated with Fe(III), Fe(II) or mixed Fe(III)/Fe(II) species in the growth media. The Fe isotope compositions of growth media before and after AMB-1 cultures, bacterial lysates (i.e. cells devoid of magnetite) and magnetite samples were measured. Single valence Fe(III) or Fe(II) growth media after AMB-1 cultures showed depletion in heavy Fe isotopes by 0.2 to 1.5% (delta Fe-56), relative to the initial Fe source. Contrastingly, heavy Fe isotopes accumulated in the growth media supplemented with mixed Fe(III)/Fe(II) sources, with enrichment up to 0.25%. These results support a preferential bacterial uptake of Fe(II) when both Fe(III) and Fe(II) are bioavailable. Bacterial lysates contained at least 50% of the total cellular Fe; thus, magnetite was not the main Fe reservoir in AMB-1 under the experimental conditions investigated in this study. In all cultures, bacterial lysates delta Fe-56 were 0.4 to 0.8% higher than the initial Fe sources, while magnetite delta Fe-56 were 1.2 to 2.5% lower. This depletion in heavy Fe isotopes of magnetite can be explained by partial reduction of Fe(III) to Fe(II) within the cell and subsequent magnetite precipitation. The data also show mass-independent fractionations (MIF) in odd (Fe-57) but not in even (Fe-54, Fe-56, Fe-58) isotopes, expressed mainly in magnetite crystals, and supporting a magnetic isotope ef
机译:磁通细菌(MTB)以遗传控制的方式生产细胞内,膜界磁铁矿[Fe(II)Fe(III)(2)O-4]晶体。它们在水生环境中无处不在,并提出代表地球上一些最古老的生物矿化生物。虽然在制约MTB中的磁力形成机制时已经进行了巨大进步,但精确的生物矿化途径仍然是辩论问题。为了进一步约束MTB中的Fe摄取和磁铁矿沉淀的方法,用Fe(III),Fe(II)或混合Fe(III)/ Fe(II)培养的磁通菌株AMB-1进行Fe稳定同位素测量。生长媒体中的物种。测定了AMB-1培养前后生长培养基的Fe同位素组合物,细菌裂解物(即磁铁矿的细胞)和磁铁矿样品。 AMB-1培养物后单值Fe(III)或Fe(II)生长培养基在重型Fe同位素中耗尽0.2-1.5%(Delta Fe-56),相对于初始Fe来源。比较的是,在补充有混合Fe(III)/ Fe(II)来源的生长培养基中积累的重股同位素,富集高达0.25%。当BE(III)和Fe(II)生物可利用时,这些结果支持Fe(II)的优先细菌摄取。细菌裂解物含有总细胞Fe的至少50%;因此,磁铁矿在本研究中调查的实验条件下,磁铁矿不是AMB-1的主要Fe储库。在所有培养物中,细菌裂解物比初始Fe源高0.4〜0.8%,而磁铁矿Delta Fe-56的含量降低1.2%至2.5%。磁铁矿的重氢同位素中的这种耗竭可以通过细胞内的Fe(III)至Fe(II)部分减少和随后的磁铁矿沉淀来解释。数据还显示奇数(Fe-57)的大规模分馏(MIF),但均匀(Fe-54,Fe-56,Fe-58)同位素,主要表达磁铁矿晶体,并支持磁性同位素EF

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号