首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Back-transformation of high-pressure minerals in shocked chondrites: Low-pressure mineral evidence for strong shock
【24h】

Back-transformation of high-pressure minerals in shocked chondrites: Low-pressure mineral evidence for strong shock

机译:震惊的Chondrites中高压矿物质的后转换:低压矿物证据强烈休克

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Post-shock annealing of meteorites can destroy their shock-induced features, particularly high-pressure minerals, and complicate the estimation of impact pressure-temperature conditions. However, distinguishing post-shock annealing features from thermal metamorphism effects can be practically difficult. Here we report results from Mbale, a highly shocked L chon-drite, to investigate the mechanisms, kinetics and identification criteria for post-shock annealing of high-pressure signatures. Olivine fragments within shock-melt veins in Mbale occur as chemically heterogeneous nanocrystalline aggregates that contain trace wadsleyite and ringwoodite. Their strong variation in fayalite content provides evidence of iron partitioning during transformation of olivine to wadsleyite, followed by back-transformation to olivine after decompression. Experimental studies of transformation kinetics show that wadsleyite transforms to olivine in seconds at temperatures above similar to 1200 K and in hours at temperatures between 900 and 1200 K. Thermal models of shock-melt cooling show that shock veins in Mbale cooled to 1200 K in 1 s. The shock pulse must have been shorter than similar to 1 s to provide the high temperature conditions for post-shock back-transformation of wadsleyite. Many highly shocked L chondrites, which have abundant high-pressure minerals, must have experienced relatively long shock durations combined with rapid cooling of shock-melt regions to preserve high-pressure phases. The most highly shocked samples, such as impact melt breccias, lack high-pressure phases because of post-shock back-transformations. (C) 2017 Elsevier Ltd. All rights reserved.
机译:陨石的后冲击退火可以破坏其触发诱导的特征,特别是高压矿物质,并使冲击压力温度条件的估计复杂化。然而,区分从热变质效应的后冲击退火特征可以实际上困难。在这里,我们向Mbale提供高度震惊的L Chon-Dripe的结果,以研究高压签名后冲击退火的机制,动力学和识别标准。 Mbale中的抗冲击静脉内的橄榄胺片段发生在化学上异质的纳米晶体聚集体,其含有痕量的疏浚物和英诺矿。它们对食子岩含量的强大变异提供了在减压后橄榄石转化期间铁分配的证据,然后在减压后对橄榄石进行后转移。转化动力学的实验研究表明,在900和1200k的温度下,在高于1200 k的温度下,在几秒钟内以几秒钟转化为橄榄石的橄榄石,在900和1200k之间的温度下。休克熔体冷却的热模型显示Mbee中的冲击静脉在1中冷却至1200 k s。冲击脉冲必须短于类似于1 s,为Wadsleyite的后冲击后反变换提供高温条件。许多具有丰富高压矿物质的高度震动的L Chondrites必须经历相对较长的休克持续时间,并加速抗冲熔酶的快速冷却以保持高压阶段。由于后冲击后转换,最震动的样品如冲击熔体Breccias,缺乏高压阶段。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号