...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Antimony mobility in sulfidic systems: Coupling with sulfide-induced iron oxide transformations
【24h】

Antimony mobility in sulfidic systems: Coupling with sulfide-induced iron oxide transformations

机译:磺化系统中的锑迁移率:与硫化氧化铁转化的偶联

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Iron (Fe) oxides are important host phases for antimony (Sb), a toxic metalloid of environmental concern. In wetland soils and sediments, poorly ordered Fe oxides such as ferrihydrite may undergo reductive dissolution and mineralogical transfor- mation upon reaction with dissolved sulfide (S(-II)). The consequences of these processes for the mobility of associated Sb have not been investigated to date. Here, we allowed Sb(V)-bearing ferrihydrite (molar ratio of Fe:Sb = 400) to react with varying S(-II) concentrations (Fe(III):S(-II) = 0.2, 0.5, and 1) at pH 6 and 8 over 32 days. Changes in speciation and concen- tration of Fe, S and Sb in the aqueous, colloidal and solid phase were examined through a combination of aqueous -phase analyses, X-ray diffraction and synchrotron X-ray absorption spectroscopy. Addition of S(-II) caused rapid reduction of Fe(III), thereby producing elemental S and Fe(II). X-ray diffractometry and Fe K -edge extended X-ray absorption fine struc- ture (EXAFS) spectroscopy revealed that S(-II) addition resulted in the precipitation of Fe(II) sulfides (mackinawite (FeS) and pyrite (FeS2 )) and formation of secondary Fe(III) oxides (goethite (FeOOH) and hematite (Fe2O3 )). The formation of mackinawite and pyrite was further confirmed by S K -edge X-ray absorption near -edge structure (XANES) spectroscopy, and was found to occur to the greatest extent in the high -sulfide treatments. The initial reductive dissolution of ferrihydrite was paralleled by a fast increase in dissolved Sb concentrations, with similar to 25% of total Sb being released in the high -sulfide treat- ments. The Sb release was followed by Sb immobilization within similar to 1-7 days. Since ion -chromatography ICP-MS revealed antimonate (Sb(OH)(6)(-) ) as the primary Sb aqueous phase species throughout the experiment, with only negligible concentra- tions of antimonite (Sb(OH)(3)) and only very minor amounts (<4% of total Sb) of tri- and tetrathioantimonate (HxSbS3Ox-3 / HxSbS4x-3 ), the decrease in Sb concentrations was attributed to surface -based sorption and structural incorporation of primar- ily Sb(V) by the secondary Fe oxides. In accordance with the dominance of aqueous Sb(V), Sb K -edge XANES spectroscopy showed that Sb(V) was also the dominant Sb species in the solid phase, comprising up to 90% of solid -phase Sb in the low - sulfide treatments. However, higher S(-II) addition and lower pH favored production of Sb(III) and resulted in up to 40% and 20% of solid -phase Sb(V) being reduced to Sb(III) at pH 6 and 8, respectively, with this Sb(III) comprising a mixture of O - and S -coordinated species. Around 15% of 0.45 - mu m Sb occurred in the colloidal (3 kDa) size fraction at pH 8 under med- ium and high S(-II) conditions, while no colloidal Sb was found in other treatments. Together, these results show that Fe oxide sulfidization can have opposing effects on Sb mobility. On the one hand, the initial sulfide -promoted Fe oxide dissolu- tion triggers Sb release into the aqueous phase. On the other hand, Sb can subsequently be immobilized via sorption to sec- ondary Fe oxides and newly -formed Fe sulfides during the later stages of sulfidization. Sulfidization reactions, and the complex opposing impacts on Sb mobility, should therefore be considered for the risk assessment and derivation of adequate management strategies at Sb-impacted sites which experience sulfidic conditions. (C) 2020 Elsevier Ltd. All rights reserved.
机译:铁(Fe)氧化物是锑(SB)的重要宿主相,环境问题有毒标志性。在湿地土壤和沉积物中,诸如Ferrihydrite的诸如Ferrihydrite的无氧化物的差价不良,在与溶解的硫化物(S(-ii))反应时可能经过还原溶解和矿物学转型。迄今尚未调查这些对相关SB的移动性流动的过程的后果。这里,我们允许Sb(V) - 挤出的Ferrihydrite(Fe:Sb = 400的摩尔比)与不同的S(-ii)浓度反应(Fe(III):s(-ii)= 0.2,0.5和1)在ph 6和8岁以上32天。通过组合水溶液分析,X射线衍射和同步调节X射线吸收光谱检查水,胶体和固相中Fe,S和Sb的形态和凝固的变化和Sb的变化。添加S(-II)引起Fe(III)的快速减少,从而产生元素S和Fe(II)。 X射线衍射测定和Fe k-ange延伸X射线吸收细微粗糙度(EXAFS)光谱显示,S(-ii)添加导致Fe(ii)硫化物(MackInawite(FES)和黄铁矿(FES2)的沉淀)和形成二次Fe(III)氧化物(甲酸酯(FeOOH)和赤铁矿(Fe 2 O 3))。通过SK -Edge X射线吸收进一步证实了MackInawite和吡钛钛矿的形成,在-Edge结构(XANES)光谱附近,发现在高锍处理中最大程度地发生在最大程度上。 Ferrihydrite的初始还原溶解并平行于溶解的Sb浓度的快速增加,其在高锍处理中释放的25%的总Sb。在类似于1-7天内的Sb固定化后,Sb释放之后。由于离子 - 十四romatogromAth-MS显示在整个实验中作为初级Sb水相物种的锑酸盐(Sb(OH)(6)(6))),其锑矿的浓度可忽略不计(Sb(OH)(3))和三种子酰亚胺酸盐(HXSBS3OX-3 / HXSBSS4X-3)仅有很少的少量(占总SB的4%),Sb浓度的降低归因于基于基于SB(V)的表面吸附和结构掺入通过二级铁氧化物。根据Sb(V)水溶性的优势,Sb k-Edge Xanes光谱显示Sb(V)也是固相中的主要Sb物种,其在低硫化物中最多90%的固体-phaseSB治疗。然而,较高的S(-II)添加和低于PH受到Sb(III)的pH值,并导致高达40%和20%的固体-physSb(v)在pH 6和8下减少至Sb(III),分别包含该Sb(III),其包含O - 和S-CoOrdinated物种的混合物。在Med-Ium和High S(-ii)条件下,在pH8的pH8的胶体(3kDa)尺寸分数中发生约15%的0.45μmsb,而在其他处理中没有发现胶体Sb。这些结果表明,Fe氧化铁硫化可能对Sb流动性具有相反的影响。一方面,初始硫化物 - 脯氨酸的Fe氧化物溶解将Sb释放到水相中。另一方面,随后可以通过吸附于硫化化后阶段通过吸附通过吸附来固定到二氧化铬和新的Fe硫化物中。因此,应考虑硫化反应,以及对SB流动性的复杂对抗影响,以进行风险评估,并在受到硫化性条件的患者的影响的SB灾害策略的风险评估和推导。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号