首页> 外文期刊>Experimental Neurology >Compensatory plasticity in diaphragm and intercostal muscle utilization in a rat model of ALS
【24h】

Compensatory plasticity in diaphragm and intercostal muscle utilization in a rat model of ALS

机译:ALS大鼠模型中膈肌和肋间肌肉利用的补偿可塑性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In SOD1(G93A) transgenic rat model of ALS, breathing capacity is preserved until late in disease progression despite profound respiratory motor neuron (MN) cell death. To explore mechanisms preserving breathing capacity, we assessed inspiratory EMG activity in diaphragm and external intercostal T2 (EIC2) and T5 (EIC5) muscles in anesthetized SOD1(G93A) rats at disease end-stage (20% decrease in body mass). We hypothesized that despite significant phrenic motor neuron loss and decreased phrenic nerve activity, diaphragm electrical activity and trans-diaphragmatic pressure (Pdi) are maintained to sustain ventilation. We alternatively hypothesized that EIC activity is enhanced, compensating for impaired diaphragm function. Diaphragm, EIC2 and EIC5 muscle EMGs and Pdi were measured in urethane-anesthetized, spontaneously breathing female SOD1(G93A) rats versus wild type littermates during normoxia (arterial PO2 similar to 90 mm Hg, PCO2 similar to 45 mm Hg), maximal chemoreceptor stimulation (MCS: 10.5% 02/7% CO,), spontaneous augmented breaths and sustained tracheal occlusion. Phrenic MNs were counted in C3-5; T2 and T5 ventrolateral MNs were counted. In end-stage SOD1(G93A) rats, 29% of phrenic MNs survived (vs. wild-type), yet integrated diaphragm EMG amplitude was normal. Nevertheless, maximal Pdi decreased 30% vs. wild type (p 0.01) and increased esophageal to gastric pressure ratio (p 0.05), consistent with persistent diaphragm weakness. Despite major T2 and T5 MN death, integrated EIC2 (100% greater than wild type) and EIC5 (300%) EMG amplitudes were increased in mutant rats during normoxia (p 0.01), possibly compensating for decreased Pdi. Thus, despite significant phrenic MN loss, diaphragm EMG activity is maintained; in contrast, Pdi was not, suggesting diaphragm dysfunction. Presumably, increased EIC EMG activity compensated for persistent diaphragm weakness. These adjustments contribute to remarkable preservation of breathing ability despite major respiratory motor neuron death and diaphragm dysfunction.
机译:在SOD1(G93A)ALS的转基因大鼠模型中,呼吸能力保持直至疾病进展晚期,尽管呼吸道运动神经元(MN)细胞死亡。为了探讨保持呼吸能力的机制,我们在疾病终期(体重减轻20%)中,评估了膈肌和外肋T2(Eic2)和T5(Eic2)和T5(Eic5)肌肉中的吸气EMG活性(体重20%)。我们假设尽管具有重要的膈导电动机神经元损失和膈神经活性降低,但膈肌活性和反膜膜(PDI)保持持续通气。我们可替代地假设EIC活性增强,补偿了隔膜功能受损。在氨基氧基氨基甲烷麻醉的,自发性呼吸的雌性SOD1(G93A)大鼠与野生型凋落物(动脉PO2类似于90 mm Hg,类似于45 mm Hg)的野生型凋落物中,测量了氨基氨基,eic2和eic5肌肉EMGs和PDI。最大化学感受器刺激(MCS:10.5%02/7%CO,),自发增强呼吸和持续的气管闭塞。膈肌MNS计数在C3-5中;计算T2和T5 ventrololatal MN。在末期SOD1(G93A)大鼠中,29%的膈肌MNS存活(与野生型),但集成的隔膜EMG振幅正常。然而,最大PDI降低了30%与野生型(P <0.01)减少,并增加食管与胃部压力比(P <0.05)增加,与持续的膜片弱效力一致。尽管具有主要T2和T5 MN死亡,但在常氧(P <0.01)期间,突变大鼠中的集成EIC2(比野生型大于野生型)和EIC5(300%)的EIC幅度增加,可能补偿降低PDI。因此,尽管具有重要的膈肌损失,但保持隔膜EMG活性;相比之下,PDI没有,表明隔膜功能障碍。据推测,增加EIC EMG活性补偿持续膜片弱点。尽管主要呼吸运动神经元死亡和隔膜功能障碍,这些调整促使呼吸能力显着保存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号