...
首页> 外文期刊>Evolutionary Ecology Research >Field level digital mapping of soil mineralogy using proximal and remote-sensed data
【24h】

Field level digital mapping of soil mineralogy using proximal and remote-sensed data

机译:使用近端和遥感数据的土壤矿物学的现场水平数字映射

获取原文
获取原文并翻译 | 示例
           

摘要

Primary (e.g., quartz) and secondary (clay) minerals are key factors determining the physical and chemical characteristics of soil. Understanding spatial distribution of minerals at the field scale would, therefore, be of potential benefit for soil management. However, current analysis requires time-consuming laboratory procedures and computational quantification analysis (e.g., SIROQUANT). Furthermore, mineral composition (e.g., quartz, kaolinite, illite and expandable clay minerals) must sum to 100. We aimed to add value to laboratory data by developing multiple linear regression (MLR) relationships between mineralogy and ancillary data such as digital numbers (DNs) (i.e., Red [R], Green [G] and Blue [B]) acquired from remotely sensed air-photographs and soil apparent electrical conductivity (ECa - mS/m) measured from proximal sensing electromagnetic (EM) instruments (i.e., EM38 and EM31). To account for composition, we compare results from the MLR approach with those from additive log-ratio (ALR) transformation of mineralogy prior to MLR modelling. This approach together with various ancillary data and trend surface parameters (i.e., scaled Easting and Northing) has greater precision and less bias of prediction than the MLR approach using untransformed data. Our approach also enables predictions to sum to 100. We conclude that the most useful ancillary data to predict the abundance of quartz, kaolinite and illite are B DNs and EM31, while expandable clays are best predicted with R DNs, EM38 and scaled Northing. The use of ancillary data to map mineralogical components combined with ALR-MLR is an effective approach, with resulting maps providing insights into soil and water management issues consistent with farmer experience.
机译:初级(例如,石英)和二次(粘土)矿物质是确定土壤的物理和化学特征的关键因素。因此,了解现场规模的矿物质的空间分布将是土壤管理的潜在利益。然而,目前的分析需要耗时的实验室程序和计算量化分析(例如,Siroquant)。此外,矿物质组合物(例如,石英,高岭石,illite和可扩张的粘土矿物质)必须总和100.我们旨在通过开发矿物学和辅助数据(如数字数字(DNS)之间的多元线性回归(MLR)关系来增加实验室数据(DNS从远程感测的空气照片和从近端感测电磁(EM)仪器中测量的远程感测的空气照片和土壤表观电导率(ECA-MS / M)获得的红色[R],绿色[G]和蓝色[B])(即, EM38和EM31)。为了考虑组合,我们将来自MLR方法的结果与来自MLR建模之前的矿物学的添加性降低(ALR)转化的结果进行比较。这种方法与各种辅助数据和趋势表面参数(即,缩放的EARTING和NROVEDTING)具有更高的精度和更少的预测偏差,而不是使用未转化的数据的MLR方法。我们的方法也使得预测总和100.我们得出结论,最有用的辅助数据预测石英,高岭石和Imlite的丰富是B DNS和EM31,而可扩展粘土最适合使用R DNS,EM38和缩放弯曲。使用辅助数据来映射矿物学组件与ALR-MLR相结合的是一种有效的方法,得到了与农民经验一致的土壤和水管理问题的洞察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号