...
首页> 外文期刊>Advanced materials interfaces >Multifunctional Separator Coatings for High-Performance Lithium–Sulfur Batteries
【24h】

Multifunctional Separator Coatings for High-Performance Lithium–Sulfur Batteries

机译:高性能锂硫电池多功能隔膜涂料

获取原文
获取原文并翻译 | 示例
           

摘要

Electrochemical energy storage systems that are cost-effective, safe, environmentally friendly, and possess long cycle/shelf-life are needed in multiple fields of technology, including transportation, portable devices, robotics, and power generation from intermittent sources. Currently, Li-ion (150 Wh kg~(?1)) and Li-ion-polymer (180 Wh kg~(?1)) batteries~([1]) are the most promising storage platforms for many applications. It is understood however that the intercalation-based cathodes used in these technologies provide limited opportunities for the sort of advancement in specific energy required to keep pace with growing demand.~([2–4]) Replacing cathodes with conversion materials such as sulfur, oxygen, or carbon dioxide, removes these limitations, but introduces new challenges associated with dissolution, transport, and parasitic reactions between battery anodes and redox products in cathodes.~([2,5]) Lithium–sulfur (Li–S) battery is the most studied and arguably the most promising candidate for commercial use for at least three reasons: (i) The Li–S battery offers tenfold higher energy storage capacity (specific capacity 1675 mAh g~(?1) and theoretical energy density 2600 Wh kg~(?1)) than any of the commercial Li-ion batteries; (ii) sulfur is earth abundant and inexpensive ($0.02 g sulfur?1), leading to low-cost high-energy batteries;~([6,7]) and (iii) sulfur is environmentally benign, reacts spontaneously and reversibly with lithium.~([5,8,9]) Despite these benefit, Li–S cells suffer from poor cycling efficiency and short lifetimes stemming from the complex solution chemistry of lithium sulfide and lithium polysulfide (LiPS) products from the cathode.~([10–13]) The most successful efforts have been devoted to cathode configurations/ materials to provide physical confinement~([11,14,15]) and chemical adsorption~([16–18]) for LiPS to prevent its dissolution and uncontrolled redox reaction with lithium metal.
机译:具有成本效益,安全,环保且具有长周期/保质期的电化学能量存储系统在多个技术领域中都需要,包括运输,便携式设备,机器人技术和间歇性发电。当前,锂离子(150 Wh kg〜(?1))和锂离子聚合物(180 Wh kg〜(?1))电池〜([1])是许多应用中最有前途的存储平台。然而,据了解,在这些技术中使用的基于插层的阴极为满足不断增长的需求而需要的特定能量的提升提供了有限的机会。〜([2-4])用转化材料(如硫,氧气或二氧化碳消除了这些限制,但是带来了与电池阳极和阴极中氧化还原产物之间的溶解,迁移和寄生反应相关的新挑战。〜([2,5])锂硫(Li–S)电池是至少出于以下三个原因,它是研究最多,可以说是最有希望用于商业用途的候选者:(i)Li-S电池可提供十倍的更高储能容量(比容量1675 mAh g〜(?1)和理论能量密度2600 Wh kg 〜(?1)),而不是任何商用锂离子电池; (ii)硫在地球上很丰富且便宜(硫$ 0.02 g?1),从而导致了低成本高能电池;〜([6,7])和(iii)硫对环境无害,可与锂自发且可逆地反应。〜([[5,8,9])尽管有这些好处,但Li-S电池仍存在循环效率低和寿命短的问题,这归因于来自阴极的硫化锂和多硫化锂(LiPS)产品的复杂溶液化学。 [10–13])最成功的努力已致力于阴极构造/材料,以为LiPS提供物理限制〜([11,14,15])和化学吸附〜([16-18]),以防止其溶解和不受控制与锂金属的氧化还原反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号