Abstract Experimental and numerical investigation of developing turbulent flow over a wavy wall in a horizontal channel
首页> 外文期刊>European Journal of Mechanics, B. Fluids >Experimental and numerical investigation of developing turbulent flow over a wavy wall in a horizontal channel
【24h】

Experimental and numerical investigation of developing turbulent flow over a wavy wall in a horizontal channel

机译:水平通道中波浪墙发育湍流的实验性和数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractTurbulent flow over a wavy bottom wall in a horizontal channel is investigated by experimental and numerical methods. The ratio between wave length and wave amplitude is 10. This work assesses the predictive accuracy of the seven turbulence models and provides an experimental benchmark dataset suitable for numerical validation in both the developing and fully periodic regions of the wavy wall flow. The experiments are conducted using a particle image velocimetry system at a Reynolds number of 10700. The influences of the recirculation region and the shear layer region on the flow mean quantities are studied experimentally. Three Reynolds stresses (streamwise, wall-normal, and shear) are examined to assess the development of the turbulence quantities along the wavy channel. There are significant differences between the flow characteristics at the first wave compared to others. Flow periodicity is found at Wave?8. Computational fluid dynamics simulations are performed to predict the turbulent flow using four eddy viscosity turbulence models: standardk-epsilon, Realizablek-epsilon, standardk-omega, and SST; and three Second Moment Closure (SMC) turbulence models: LRR-IP, LPS, and SMC-omega. The standardk-epsilon, Realizablek-epsilon, and LPS models have the best overall agreement compared to the experiments. The eddy viscosity models predict similar results for the mean velocity and recirculation location. The LPS and SMC-omega models are also in good agreement with experimental data for the mean velocity. The wall treatment is shown to be critically important in the capability of the model to predict the flow separation. The results indicate no notable benefit of the SMC models compared to the eddy viscosity models in capability of predicting the mean flow and the separation and re-attachment locations.Highlights?PIV experimental data for turbulent flow over a channel with a lower wavy wall.?CFD analysis of 2D cross section using 4 eddy viscosity models and 3 second moment closure RANS models.?Results in the developing and fully periodic regions are presented.?Mean flow, separation and re-attachment locations, and Reynolds shear stress are presented.
机译:<![cdata [ Abstract 通过实验和数值方法研究了水平通道中的波浪底壁上的湍流。波长和波幅度之间的比率为10.该工作评估了七种湍流模型的预测精度,并提供了一种适用于波浪壁流的显影和全周期区域中的数值验证的实验基准数据集。通过在雷诺数为10700的雷诺数进行实验。通过实验研究了再循环区域和剪切层区域对流动平均量的影响。检查三个雷诺应力(流动,壁正常和剪切),以评估沿波浪通道的湍流量的发展。与其他波相比,第一波的流动特性之间存在显着差异。流动周期在波→8时发现。执行计算流体动力学模拟以预测使用四个涡粘度湍流模型的湍流:标准 k -epsilon,可实现的 k < / mml:math> -epsilon,标准 k -omega和sst;和三个第二时刻闭合(SMC)湍流模型:LRR-IP,LPS和SMC-Omega。标准 K -EPSILON,可实现的 K -EPSILON和LPS模型具有最佳总体协议到实验。涡粘度模型预测平均速度和再循环位置的类似结果。 LPS和SMC-OMEGA模型也与平均速度的实验数据很好。壁处理显示在模型的能力中对预测流动分离的能力至关重要。结果表明,与涡粘度模型的能力相比,SMC模型的显着益处与预测平均流量和分离和重新附着位置的能力相比。 突出显示 ?< / ce:标签> PIV在带有下波浪墙的通道上的湍流的实验数据。 < CE:列表项ID =“D1E2751”> 使用4个涡粘度模型的2D横截面的CFD分析3秒钟封闭式rans模型。 结果在开发和完全周期性区域中呈现。 呈现平均流量,分离和重新附着位置,并且雷诺剪切应力呈现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号