首页> 外文期刊>European Journal of Agronomy >Leveraging biological insight and environmental variation to improve phenotypic prediction: Integrating crop growth models (CGM) with whole genome prediction (WGP)
【24h】

Leveraging biological insight and environmental variation to improve phenotypic prediction: Integrating crop growth models (CGM) with whole genome prediction (WGP)

机译:利用生物洞察和环境变异来改善表型预测:整合作物生长模型(CGM)全基因组预测(WGP)

获取原文
获取原文并翻译 | 示例
           

摘要

A successful strategy for prediction of crop yield that accounts for the effects of genotype, environment and their interactions with management will create many opportunities for enhancing the productivity of agricultural systems. Crop growth models (CGMs) have a history of application for crop management decision support. Recently, whole genome prediction (WGP) methodologies have been developed and applied in breeding to enable prediction of crop traits for new genotypes, and thus increased the size of plant breeding programs without expanding expensive field testing. The integration of a CGM into the algorithm for WGP, referred to as CGM-WGP, has opened up the potential for prediction of G x E x M interactions for breeding and product placement applications. The main objectives of this study were to extend CGM-WGP methodology to train models using data from multiple environments, and to evaluate, using both synthetic and experimental data from a maize drought breeding program, whether CGM-WGP methodology can enable improved phenotypic prediction when G x E interactions are an important determinant of performance. The CGM-WGP methodology was improved by 1) reformulating the model as a Bayesian generalized linear hierarchical model, and 2) by sampling the posterior distribution using a Metropolis-within-Gibbs sampling algorithm. The increased efficiency of the algorithm enabled the use of multiple environments and larger populations than those used in previous studies. Synthetic datasets included three environments and an empirical dataset included two environments contrasting for drought stress pattern and intensity. The empirical dataset included four double haploid populations expressing different levels of G x E interaction. Collectively, the prediction accuracy results for the empirical study indicate there were realized advantages in prediction accuracy for yield, in both the water limited and the not water limited environments, from the modeling of the G x E interactions by the CGM-WGP methodology relative to the reference method BayesA. Similarly, the difference in CGM-WGP accuracy relative to BayesA increased with decreasing similarity between the environment types utilized for training and evaluating the predictions. The synthesis provided in this work that encompasses crop physiology and modeling, quantitative genetics, genomic prediction and breeding, should stimulate a cross disciplinary dialogue towards building the next generation of prediction methodologies.
机译:一种成功的作物产量预测造成基因型,环境及其与管理互动的影响的成功策略将为提高农业系统的生产力创造许多机会。作物生长模型(CGMS)具有裁定管理决策支持的申请历史。最近,已经开发了全基因组预测(WGP)方法,并应用于育种以实现新基因型的作物性状,从而增加植物育种计划的大小而不扩大昂贵的现场测试。 CGM的集成到WGP的算法中,称为CGM-WGP,已经打开了G X E X M相互作用对繁殖和产品放置应用的可能性。本研究的主要目标是扩展CGM-WGP方法以使用来自多种环境的数据培训模型,并使用来自玉米干旱育种计划的合成和实验数据来评估,CGM-WGP方法是否可以提高表型预测G X E相互作用是表现的重要决定因素。 CGM-WGP方法通过1​​)改进了模型作为贝叶斯广义线性分层模型的重构,通过使用Metropolis-In-Gibbs采样算法对后验分布进行采样。算法的提高效率使得使用多种环境和更大的人群而不是先前研究中使用的群体。合成数据集包括三个环境,并且经验数据集包括两个环境对对抗的干旱应力模式和强度进行对比。经验数据集包括表达不同水平的四个双倍单倍体群,G X E相互作用。统称,实证研究的预测准确性结果表明,从CGM-WGP方法的相互作用的G X E相互作用的建模,在水有限公司和不与水有限环境中,实现了预测准确性的优点。参考方法Bayesa。类似地,CGM-WGP精度相对于Bayesa的差异随着用于训练和评估预测的环境类型之间的相似性而增加。在这项工作中提供的合成,包括作物生理学和建模,定量遗传学,基因组预测和育种,应刺激建立下一代预测方法的跨学科对话。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号