...
首页> 外文期刊>Enzyme and Microbial Technology >A novel green approach for fabricating visible, light sensitive nano-broccoli-like antimony trisulfide by marine Sb(v)-reducing bacteria: Revealing potential self-purification in coastal zones
【24h】

A novel green approach for fabricating visible, light sensitive nano-broccoli-like antimony trisulfide by marine Sb(v)-reducing bacteria: Revealing potential self-purification in coastal zones

机译:一种新的绿色方法,用于制造可见光,光敏纳米西兰花样样锑的亚硫化物,通过海洋SB(v) - 细菌:揭示沿海地区的潜在自纯化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Antimony trisulfide (Sb2S3) is industrially important for processes ranging from a semiconductor dopant through batteries to a flame retardant. Approaches for fabricating Sb2S3 nanostructures or thin films are by chemical or physicochemical methods, while there have been no report focused on the biological synthesis of nano Sb2S3. In the present study, we fabricated nano-broccoli-like Sb2S3 using Sb(V) reducing bacteria. Thirty four marine and terrestrial strains are capable of fabricating Sb2S3 after 1-5 days of incubation in different selective media. The nano-broccoli-like bio-Sb2S3 was light sensitive between 400-550 nm, acting as a photo-catalyst with the bandgap energy of 1.84 eV. Moreover, kinetic and mechanism studies demonstrated that a k value of similar to 0.27 h(-1) with an R-2 = 0.99. The bio-Sb2S3 supplemented system exhibited approximately 18.4 times higher photo-catalytic activity for degrading methyl orange (MO) to SO42-, CO2 and H2O compared with that of control system, which had a k value of similar to 0.015 h(-1) (R-2=0.99) under visible light. Bacterial community shift analyses showed that the addition of S or Fe species to the media significantly changed the bacterial communities driven by antimony stress. From this work it appears Clostridia, Bacilli and Gammaproteobacteria from marine sediment are potentially ideal candidates for fabricating bio-Sb2S3 due to their excellent electron transfer capability. Based on the above results, we propose a potential visible light bacterially catalyzed self-purification of both heavy metal and persistent organic contamination polluted coastal waters.
机译:锑三硫化物(SB2S3)在工业上是重要的,对于从半导体掺杂剂通过电池到阻燃剂的过程是重要的。制造SB2S3纳米结构或薄膜的方法是通过化学或物理化学方法,而没有报告的重点是纳米SB2S3的生物合成。在本研究中,我们使用Sb(V)还原细菌制造了纳米西兰花样的SB2S3。在不同选择性培养基中孵育1-5天后,三十四个海洋和陆地菌株能够制造SB2S3。纳米西兰花样的Bio-Sb2S3在400-550nm之间的光敏感,用作带隙能量为1.84eV的光催化剂。此外,动力学和机制研究表明,K值类似于0.27h(-1),R-2 = 0.99。与对照系​​统相比,Bio-Sb2S3的Bio-Sb2s3补充系统表现出约18.4倍的光催化活性,用于降解甲基橙(Mo)至SO42-,CO 2和H 2 O,其具有与0.015h(-1)相似的AK值( r-2 = 0.99)在可见光下。细菌群落转变分析表明,向培养基中添加S或Fe种显着改变了锑胁迫驱动的细菌社区。根据这项工作,出现梭菌,海洋沉积物中的杆菌和伽马察雷菌是由于其优异的电子转移能力而制造生物SB2S3的理想候选者。基于上述结果,我们提出了一种潜在的可见光细菌催化的重质金属和持久性有机污染污染沿海水域的自纯化。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号