...
首页> 外文期刊>Environmental Science: Nano >Physicochemical properties of air discharge-generated manganese oxide nanoparticles: comparison to welding fumes
【24h】

Physicochemical properties of air discharge-generated manganese oxide nanoparticles: comparison to welding fumes

机译:空气排放产生的锰氧化物纳米粒子的物理化学性质:焊接烟雾比较

获取原文
获取原文并翻译 | 示例

摘要

Exposure to high doses of manganese (Mn) via inhalation, dermal contact or direct consumption can cause adverse health effects. Welding fumes are a major source of manganese containing nanoparticles in occupational settings. Understanding the physicochemical properties of manganese-containing nanoparticles can be a first step in understanding their toxic potential following exposure. In particular, here we compare the size, morphology and Mn oxidation states of Mn oxide nanoparticles generated in the laboratory by arc discharge to those from welding collected in heavy vehicle manufacturing. Fresh nanoparticles collected at the exit of the spark discharge generation chamber consisted of individual or small aggregates of primary particles. These nanoparticles were allowed to age in a chamber to form chain-like aggregates of primary particles with morphologies very similar to those from welding fumes. The primary particles were a mixture of hausmannite (Mn3O4), bixbyite (Mn2O3) and manganosite (MnO) phases, whereas aged samples revealed a more amorphous structure. Both Mn2+ and Mn3+ , as in a double valence stoichiometry present in Mn3O4, and Mn3+, as in Mn3O3 and MnOOH, were detected by X-ray photoelectron spectroscopy on the surface of the nanoparticles in the laboratory nanoparticles and welding fumes. Dissolution studies conducted for these two Mn samples (aged and fresh fume) reveal different release kinetics of Mn ions in artificial lysosomal fluid (pH 4.5) and very limited dissolution in Gamble's solution (pH 7.4). Taken together, these data suggest several important considerations for understanding the health effects of welding fumes. First, the method of particle generation affects the crystallinity and phase of the oxide. Second, welding fumes consist of nanoparticles with multiple oxidation states, whether they are amorphous or crystalline, or occur as isolated nanoparticles or agglomerates. Third, although the dissolution behavior depends on the conditions used for nanoparticle generation, the dissolution of Mn oxide nanoparticles in the lysosomal fluid may promote Mn ion translocation into various organs causing toxic effects.
机译:通过吸入,皮肤接触或直接消耗暴露于高剂量的锰(Mn)会导致健康影响不良。焊接烟雾是占职业环境中纳米粒子的锰纳米颗粒的主要来源。了解含锰纳米颗粒的物理化学性质可以是了解暴露后毒性潜力的第一步。特别地,在这里,我们通过在重型车辆制造中收集的焊接来比较在实验室中产生的Mn氧化物纳米颗粒的大小,形态和Mn氧化态。在火花放电发电室的出口处收集的新鲜纳米颗粒由初级颗粒的个体或小聚集体组成。将这些纳米颗粒在腔室中达到,以形成初级颗粒的链状聚集体,其形态与焊接烟雾非常相似。初级颗粒是Hausmannite(MN3O4),Bixybe矿石(MN2O3)和锰(MNO)相的混合物,而老化样品揭示了更无定形的结构。 Mn2 +和Mn3 +,如在Mn3O4和Mn3 +中存在的双价化学计量,如Mn3O3和Mnooh中,在实验室纳米颗粒和焊接烟雾中纳米颗粒的表面上被X射线光电子能谱检测。对这两个Mn样品(老化和新鲜烟雾)进行的溶出性研究显示人工溶酶体液(pH4.5)中的Mn离子的不同释放动力学,并且在赌博溶液中非常有限的溶解(pH7.4)。总之,这些数据表明了解焊接烟雾的健康影响的几个重要考虑因素。首先,颗粒产生方法影响氧化物的结晶度和相。其次,焊接烟雾由具有多种氧化态的纳米颗粒组成,它们是无定形还是结晶,或者作为分离的纳米颗粒或附聚物发生。第三,虽然溶出行为取决于用于纳米粒子产生的条件,但溶滤液中的Mn氧化物纳米颗粒在溶酶体流体中的溶解可以促进Mn离子易位成各种器官引起毒性作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号