首页> 外文期刊>Engineering Fracture Mechanics >A computational investigation of length-scale effects in the fracture behaviour of a graphene sheet using the atomistic J-integral
【24h】

A computational investigation of length-scale effects in the fracture behaviour of a graphene sheet using the atomistic J-integral

机译:使用原子J-积分的石墨烯片骨折行为中长度效应的计算研究

获取原文
获取原文并翻译 | 示例
           

摘要

The overarching objective of this paper is to investigate the validity of application of continuum-based linear elastic fracture mechanics (LEFM) methodology, which is often employed by researchers to model fracture processes at the "discrete" atomic scale. The potential sources of error in the application of LEFM at the nanoscale are: (a) Length-scale effects, (b) non-local effects due to long range inter-atomic forces, and (c) entropic effects due to random thermal motion of atoms. The material selected for this study is monolayer graphene, primarily because extensive data, both experimental and analytical, already exist for this material in the literature for model validation. Further, an atomistic J-integral is implemented as a nano-scale fracture metric to investigate flaw-tolerance at the nanoscale reported by many researchers, and to develop a methodology to predict the initiation fracture toughness of the material. For this purpose, a bond-order based potential (ReaxFF) available in LAMMPS molecular dynamics (MD) software is utilized to accurately pinpoint bond separation. Predictions obtained using the atomistic J are compared with LEFM predictions for the case of a single (zig-zag) graphene sheet with a center-crack under tensile loading at room temperature, and show significant deviation from LEFM for crack lengths below a certain threshold.
机译:本文的总体目标是探讨基于连续的线性弹性骨折力学(LEFM)方法的应用的有效性,该方法通常由研究人员采用,以“离散”原子尺度模拟破裂过程。在纳米级右侧筛选筛选的潜在误差源是:(a)长度级别效应,(b)由于长距离原子力而导致的非局部效应,(c)由于随机热运动引起的熵效应原子。选择本研究的材料是单层石墨烯,主要是因为在模型验证中的文献中已经存在了实验和分析的广泛数据,这是用于模型验证的文献中的这种材料。此外,原子j-积分被实施为纳米级骨折度量,以研究许多研究人员报告的纳米尺度的缺陷耐受性,并开发一种方法来预测材料的起始断裂韧性。为此目的,利用LAMMPS分子动力学(MD)软件中可用的基于键的潜在电位(REAXFF)来精确地定位粘合分离。将使用原子J获得的预测与单个(锯齿ZAG)石墨烯片的液晶预测进行比较,其在室温下的拉伸负载下的中心裂纹,并且显示出与右裂缝的显着偏差,用于低于一定阈值的裂缝长度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号