首页> 外文期刊>Engineering Fracture Mechanics >Numerical simulation of creep fracture with internal time-dependent hyperelastic-Kelvin cohesive bonds
【24h】

Numerical simulation of creep fracture with internal time-dependent hyperelastic-Kelvin cohesive bonds

机译:内部时间依赖性高弹性 - 开尔文粘性键的蠕变骨折的数值模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The macro brittle creep is closely related to the fracturing process on the micro scale. The virtual internal bond (VIB) is a microstructure-based continuum modeling method. It considers a solid as a bond network on the micro scale. The macro constitutive relation is directly derived from the micro bond potential, which intrinsically contains the micro fracture mechanisms. In this study, the VIB is firstly extended for modeling viscoelasticity, and then it is applied to creep fracture simulation. To reflect the time-dependence property of creep, a viscous bond is introduced to join a time-dependent hyperelastic bond in parallel to constitute a hybrid hyperelastic-Kelvin bond. Based on the hybrid bond potential, the macro viscohyperelastic constitutive relation is derived. The corresponding relationship between the micro bond parameters and the macro material constants is theoretically calibrated. Through this model, the typical three-stage feature of the brittle creep is well reproduced and the creep fracture is effectively simulated. The simulation results suggest that the fast and unstable fracture growth leads to the tertiary stage of creep. The viscosity mainly affects the deformation rate in the primary and tertiary stage of creep. The constitutive relation of the VIB stems from the 1D micro bond; thus, the rheology model derived from the cluster of rheological elements (e.g., spring, dashpot) is easily incorporated into the VIB framework, avoiding the 1D-to-3D generalization of the rheology law. For both the micro viscosity and fracture mechanisms that are incorporated into the macro constitutive relation, the present VIB can simulate complex creep fractures without a separate fracture criterion. It has great potential to simulate fracture propagation in a more extensive viscohyperelastic material.
机译:宏观脆性蠕变与微尺度的压裂过程密切相关。虚拟内键(VIB)是一种基于微结构的连续内建模方法。它将坚实的粘结网络视为微尺度。宏观本构体关系直接来自微键电位,其本质上含有微骨折机制。在该研究中,首先延伸VIB以进行建模粘弹性,然后应用于蠕变裂缝模拟。为了反映蠕变的时间依赖性,引入粘性键,以平行加入时间依赖性的高弹性键,以构成混合高弹性 - 开尔文键。基于混合粘合电位,衍生宏观粘结性构成关系。从理论上校准微键参数和微距材料常数之间的相应关系。通过该模型,脆性蠕变的典型三级特征是良好的再现,并且有效地模拟了蠕变裂缝。仿真结果表明,快速和不稳定的骨折生长导致蠕变的第三阶段。粘度主要影响蠕变的初级和三级阶段的变形率。 VIB的本构体关系源于1D微键;因此,源自流变元素(例如,弹簧,DASHPOT)的流变模型容易掺入VIB框架中,避免了流变法的1D-3D概括。对于掺入宏观本构关系中的微粘度和断裂机制,本发明的VIB可以模拟络合蠕变裂缝而没有单独的裂缝标准。它具有模拟更广泛的ViscoperceL弹性材料的骨折传播具有很大的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号