...
首页> 外文期刊>Engineering Fracture Mechanics >Analysis of the ground surface finish effect on the LCF life of a 304L austenitic stainless steel in air and in PWR environment
【24h】

Analysis of the ground surface finish effect on the LCF life of a 304L austenitic stainless steel in air and in PWR environment

机译:空气中304L奥氏体不锈钢LCF寿命的地表光学效果分析

获取原文
获取原文并翻译 | 示例

摘要

Highlights?Low Cycle Fatigue life of a 304L stainless steel in PWR environment is shorter than in air at 300°C.?The strain intensity factor ΔKεaccounts for the crack front shape in ground and polished samples.?Fatigue crack growth laws were established in polished samples in each environment.?The crack growth rates can be obtained from striation spacing in PWR environment but not in air.?The propagation life in ground specimens is predicted in both environments.AbstractIn this paper, the Low-Cycle Fatigue (LCF) resistance of an austenitic 304L stainless steel used in nuclear plant components is investigated. More precisely, a special attention is here paid to the respective role of surface finishing and environmental effects on the elementary damage stages, namely crack initiation and crack propagation. The objective is not only to assess the conservatism of design rules introducing corrections factors to account for the decay induced by these parameters, but also to get insights into the mechanisms controlling the fatigue life. With this aim, fatigue tests are performed under a controlled total strain amplitude Δεt/2 of 0.6% with a strain rate of 10?4s?1on ground or polished cylindrical specimens, in air and in Pressurized Water Reactor (PWR) environment. A detailed analysis of surface damage and fracture surfaces is conducted to estimate the respective fraction of initiation and propagation in the total life according to the environment and surface finishing. It first comes out that, regardless of the considered condition, the initiation stage is negligible with respect to the propagation duration. Furthermore, it is shown that the propagation in ground specimen is affected, in both environments by the specific crack shape resulting from the initiation process and subsequent coalescence of multiple initiated cracks within the grinding scratches. Moreover, a detailed analysis of striations present on fracture surfaces indicates that while a good correlation between the striation spacing and the average crack growth rate is noticed in PWR environment, a discrepancy is observed in air. Nevertheless LCF crack growth laws have been identified is each environment by introducing the strain intensity factor ΔKε. It is then demonstrated that predictions of fatigue life carried out by accounting for the initial surface finishing through the crack shape factor and the environmental effect by means of the proper crack growth law present a good agreement with experimental data.]]>
机译:<![cdata [ 亮点 PWR环境中304L不锈钢的低循环疲劳寿命比在300°C的空气中短于空气中。 应变强度因子ΔKε占地面和抛光样本中的裂缝前形状的帐户。 在抛光样本中建立了疲劳裂纹增长法律每个环境。 可以从PWR环境中的突变间距获得裂缝增长率,但不在空中。 在两个环境中预测地面样本中的传播寿命。 抽象 在本文中,研究了核植物组分中使用的奥氏体304L不锈钢的低周期疲劳(LCF)电阻。更精确地,这里特别注意表面整理和环境影响对基本损伤阶段的相应作用,即裂纹启动和裂纹繁殖。该目标不仅要评估设计规则的保守主义,引入矫正因素,以考虑这些参数引起的衰变,而且还要了解控制疲劳寿命的机制的洞察力。利用这种目的,疲劳试验在受控的总应变幅度Δε t / 2,0.6%,其应变率为10 ?4 s ?1 在地面或抛光的圆柱形样品上,在空气和加压水反应器(pwr)环境中。对表面损伤和断裂表面的详细分析是为了估计根据环境和表面精加工的总寿命中的引发和传播的各个分数。首先出现,无论考虑的条件如何,相对于传播持续时间都可以忽略不计。此外,示出了通过引发过程中产生的特定裂缝形状和在研磨划痕内的多个引发裂缝的随后聚结的特定裂缝形状,在这种环境中受到地面样本中的传播。此外,对裂缝表面上存在的条纹的详细分析表明,虽然在PWR环境中被注意到突变间隔与平均裂纹生长速率之间的良好相关性,但在空气中观察到差异。然而,通过引入应变强度因子ΔKε。然后证明,通过适当的裂缝增长法通过裂缝形状因子算用于初始表面处理的初始表面处理的疲劳寿命的预测呈现出与实验数据的良好一致性。 ]]>

著录项

  • 来源
    《Engineering Fracture Mechanics》 |2017年第2017期|共13页
  • 作者单位

    Pprime UPR 3346 CNRS-ENSMA-Université de Poitiers Département de Physique et de Mécanique des Matériaux ENSMA;

    Pprime UPR 3346 CNRS-ENSMA-Université de Poitiers Département de Physique et de Mécanique des Matériaux ENSMA;

    Pprime UPR 3346 CNRS-ENSMA-Université de Poitiers Département de Physique et de Mécanique des Matériaux ENSMA;

    Areva NP Tour Areva;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号