...
首页> 外文期刊>Engineering Fracture Mechanics >Stress intensity factor solutions for fretting fatigue using stress gradient factor
【24h】

Stress intensity factor solutions for fretting fatigue using stress gradient factor

机译:用应力梯度因子进行烦躁疲劳的应力强度因子解决方案

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Highlights?Provides Stress Intensity Factor solutions for Fretting Fatigue.?Presents the Stress Gradient Factor applied to Fretting Fatigue.?Presents a set of results for the Stress Gradient Factor considering different geometries, materials and loadings.?2D SIF fretting solution could be applied to different methods of fracture analysis.AbstractThis paper presents stress intensity factor (SIF) solutions for fretting fatigue conditions by including a stress gradient factor (SGF) to correct the classic geometry factor for tension semi-infinite strip (TSIS) specimen. This gradient factor considers the stress gradient due to the pressure of the pad on the surface of the specimen, which creates a high concentration of stresses around the contact of the bodies. To obtain these solutions, 2D finite element model simulations were performed varying important fretting parameters, namely: coefficient of friction, bulk stress intensity, pad radius and material. All configurations respected a partial slip contact condition and the results obtained show agreement with the ones obtained analytically. Weight functions were used to obtain stress intensity factors under mode I, then to compute the SGF, which were fit into equations with a unique structure, varying only coefficients. To consider real problems, a 3D correction factor was introduced. The final SGF presented a general form to compute SIF under fretting conditions when applied in suggested methods, such as: Strain-based Fracture Mechanics, Theory of Critical Distances (TCD) and Stress Gradient.]]>
机译:<![cdata [ 亮点 为烦恼疲劳提供应力强度因子解决方案。 呈现给烦恼疲劳的应力梯度因子。 就考虑不同几何,材料和装载的应力梯度因子都有一组结果。 2d sif烦恼解决方案可以是应用程序不同的裂缝分析方法。 抽象 本文提出了通过包括应力梯度因子(SGF)来校正经典几何的压力强度因子(SIF)解决方案来进行疲劳条件张力半无限带(TSIS)标本的因素。该梯度因子认为由于样本表面上的焊盘的压力,应力梯度,这在围绕体的接触产生了高浓度的应力。为了获得这些解决方案,2D有限元模拟模拟变化了重要的微动参数,即:摩擦系数,散装应力强度,焊盘半径和材料。所有配置均尊重部分滑移接触条件,结果显示了与分析获得的结果的协议。重量函数用于在模式I下获得应力强度因子,然后计算SGF,其适合具有独特结构的等式,仅不同系数。要考虑真正的问题,引入了3D校正因子。最终的SGF呈现一般形式,以在建议的方法应用时计算微动条件下的SIF,例如:基于应变的骨折力学,临界距离(TCD)和应力梯度理论。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号