...
首页> 外文期刊>Engineering Fracture Mechanics >Modeling of hydraulic fracturing in ultra-low permeability formations: The role of pore fluid cavitation
【24h】

Modeling of hydraulic fracturing in ultra-low permeability formations: The role of pore fluid cavitation

机译:超低渗透形成中水力压裂的建模:孔隙流体空化的作用

获取原文
获取原文并翻译 | 示例

摘要

Highlights?Multi-physics Finite Element Analyses show that ignoring cavitation and sorption leads to spurious outcomes in the FEA simulations of fluid-driven fractures in ultra-low permeability formations.?A constitutive response for the pore-fluid is introduced to allow cavitation and sorption of the pore-fluid in FEA simulations.?A mechanistic model is proposed to explain how introducing the cavitation and sorption in the constitutive response of the pore-fluid leads to regularization of the pore-pressure in the crack-tip region.AbstractHydraulic Fracturing (HF) refers to the process of nucleation and growth of tensile fractures in a reservoir formation by means of flow-induced pressurization. The processes in the fracture process zone (FPZ) of a fluid-driven fracture involve a non-linear coupling between fracturing-fluid flow, rock deformation and diffusion of pore fluid. Identifying all the key physical processes is critical for reliably modeling and simulating fluid-driven fractures. The role of cavitation and subsequent alteration in pore fluid saturation is often ignored in hydraulic fracturing simulations, i.e., the pore fluid is modeled to be able to sustain arbitrarily large negative pressures without undergoing cavitation. Using multi-physics Finite Element Analyses (FEA), we show that ignoring cavitation may lead to spurious outcomes in FEA simulations of fluid-driven fractures in ultra-low permeability formations. The FEA simulations, in the absence of cavitation, predict an unrealistically large suction (negative pressure) ahead of the crack tip, which grows without bound upon refinement of the FEA mesh. Owing to such a large suction at the crack tip, the breakdown pressure obtained from the FEA simulations is anomalously large and lacks objectivity (i.e., progressively increases upon a continued refinement of the FEA mesh). Mechanistic insights gained from FEA simulations suggest that the negative pressure ahead of the crack tip is likely to cause cavitation of the pore fluid, resulting in creation of a partially-saturated region around the crack tip. This means that irrespective of the initial saturation of the rock, inclusion of cavitation and subsequent alteration in pore fluid saturation in FEA simulations is necessary for objectively modeling the fluid-driven fractures in ultra-low permeability formations. The revised FEA simulations of hydraulic fracturing show that the inclusion of cavitation and subsequent alteration in pore fluid saturation in FEA simulations eliminates the unrealistically large suction at the crack tip, regularizes the breakdown pressure, and removes the noted lack of objectivity.]]>
机译:<![cdata [ 亮点 多物理有限元分析表明,忽略空化和吸附导致FEA的流体模拟中的杂散结果 - 驱动的骨折在超低渗透性形成中。 引入了孔隙流体的组成响应,以允许FEA模拟中的孔隙流体的空化和吸附。 提出了机制模型,以解释如何介绍孔隙流体的组成响应中的空化和吸附导致裂纹尖端区域中的孔隙压力的正则化。 抽象< / ce:section-title> 液压压裂(HF)是指该过程通过流动诱导的加压形成储层中拉伸骨折的成核和生长。流体驱动骨折的断裂过程区(FPZ)中的方法涉及压裂流体流动,岩石变形和孔隙流体扩散之间的非线性耦合。识别所有关键物理过程对于可靠地建模和模拟流体驱动的骨折至关重要。空化和随后改变孔隙流体饱和的作用通常忽略液压压裂模拟中,即孔隙流体被建模,以便在不经历空化的情况下维持任意大的负压。使用多物理有限元分析(FEA),我们表明,忽略空化可能导致FEA模拟超低渗透形成中的流体驱动骨折的杂散结果。在没有空化的情况下,FEA模拟预测裂缝尖端前方的不切实际地大的吸入(负压),而不会在FEA网格的改进时生长而不会粘附。由于在裂缝尖端处的这种大抽吸,从FEA模拟获得的击穿压力非常大并且缺乏客观性(即,在FEA网格的持续改进时逐渐增加)。从FEA模拟中获得的机械洞察表明,裂纹尖端前方的负压可能会导致孔隙流体的空化,导致在裂纹尖端周围产生部分饱和区域。这意味着无论岩石的初始饱和度如何,空化的包含和随后的FEA模拟中的孔隙流体饱和的改变是必要的,以客观地模拟超低低渗透形成中的流体驱动的骨折。修订的液压压裂的FEA模拟表明,在FEA模拟中包含空化和随后的孔隙流体饱和的变化,消除了裂缝尖端的不切实际地大的吸力,规则地规划击穿压力,并消除所注读的缺乏客体。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号