首页> 外文学位 >Mathematical Modeling of Long-Term Productivity of Hydraulic- and HEG- Fractured Wells in Ultra-Low Permeability Reservoirs
【24h】

Mathematical Modeling of Long-Term Productivity of Hydraulic- and HEG- Fractured Wells in Ultra-Low Permeability Reservoirs

机译:超低渗透油藏中水力和HEG压裂井的长期产能数学模型

获取原文
获取原文并翻译 | 示例

摘要

Modern multi-fractured shale gas and oil wells are horizontal wells completed with Simul Frac, Zipper Frac, and particularly Modified Zipper Frac techniques. An analytical model was developed in this study for predicting the long-term productivity of these wells under pseudo steady state flow conditions, considering the cross-bilinear flow in the rock matrix and hydraulic fractures. Performance of the model was verified with the well productivity data obtained from a shale gas field and a shale oil field. Sensitivity analyses were performed to identify key parameters of hydraulic fracturing affecting well productivity. The conducted field case studies show that the analytical model over-predicts shale gas well productivity with an error of less than 5%, and over-predicts shale oil productivity with an error less than 10%. Results of sensitivity analysis with the model indicate that well productivity increases with reduced fracture spacing, increased fracture length, and increased fracture width, but not proportionally. Whenever operational restrictions permit, more fractures with high-density should be created in the hydraulic fracturing process to maximize well productivity. The benefit of increasing fracture width should diminish as the fracture width becomes larger. Thus, there is no need to pursue wide fractures in the hydraulic fracturing process. Increasing fracture length by pumping more fracturing fluid can increase well production rate nearly proportionally. Therefore, it is desirable to create long fractures by pumping a high volume of fracturing fluid in the hydraulic fracturing process.;The use of fresh water as a fracturing fluid has limitations such as limited water availability in arid areas and negative impacts of water on oil and gas production in formations with high clay content. Alternatives to water for well fracturing include tailored energetic materials such as novel explosives. High energy gas fracturing (HEGF) creates radial fractures with fracture-orientations independent of formation stress anisotropy and heterogeneity. This eliminates the requirement of in-situ stress orientation for designing multi-hydraulic water-fracturing horizontal wells. Assuming uniformly distributed radial fractures around wellbore, an analytical well productivity model was derived in this study to predict productivity of HEGF-completed oil wells under pseudo steady state flow condition. Field case studies and sensitivity analyses were performed with the analytical model. Results of field case studies indicate that the analytical model over-predicts productivity of HEGF-completed wells by about 10%. Sensitivity analysis with the analytical model shows that the productivity of HEGF-completed wells reaches a maximum value at an optimal number of radial fractures around the wellbore. The productivity of the HEGF-completed wells increases non-linearly with fracture conductivity. But the benefit of increasing fracture conductivity levels out beyond fracture conductivity 2000 md-inch for the typical case investigated in this study.
机译:现代的多裂页岩气和油井是水平井,采用Simul压裂,Zipper压裂,特别是Modified Zipper Frac技术完成。在这项研究中,开发了一个分析模型,用于预测假稳态流条件下这些井的长期产能,考虑了岩石基质中的双双线性流和水力压裂。通过从页岩气田和页岩油田获得的井产能数据验证了模型的性能。进行了敏感性分析,以确定水力压裂影响井产能的关键参数。进行的现场案例研究表明,该分析模型高估了页岩气井产能,误差小于5%,高估了页岩油生产率,误差小于10%。使用该模型进行敏感性分析的结果表明,随着裂缝间距的减小,裂缝长度的增加和裂缝宽度的增加,井的生产率提高了,但并不成比例。只要操作限制允许,在水力压裂过程中应制造出更多的高密度裂缝,以最大程度地提高油井的生产率。随着裂缝宽度变大,增加裂缝宽度的好处应减少。因此,在水力压裂过程中不需要进行大范围的压裂。通过泵送更多的压裂液来增加裂缝长度,可以几乎成比例地提高油井生产率。因此,理想的是在水力压裂过程中通过泵入大量的压裂液来产生长裂缝。使用淡水作为压裂液具有局限性,例如在干旱地区水的供应有限以及水对油的负面影响粘土含量高的地层中的天然气和天然气生产。压裂用水的替代品包括量身定制的高能材料,例如新型炸药。高能气体压裂(HEGF)产生径向裂缝,其裂缝方向与地层应力各向异性和非均质性无关。这消除了设计多液压水压裂水平井时就地应力定向的要求。假设井眼周围的径向裂缝分布均匀,则在本研究中导出了一个分析井产能模型,以预测拟稳态流条件下已完成HEGF的油井的产能。利用分析模型进行了现场案例研究和敏感性分析。现场案例研究的结果表明,该分析模型高估了已完成HEGF的井的生产率约10%。通过分析模型进行的敏感性分析表明,在井眼周围的最佳径向裂缝数量下,已完成HEGF的井的产能达到了最大值。 HEGF完井的产能随裂缝传导率非线性增加。但是,在本研究中研究的典型案例中,增加裂缝传导率水平的好处超出了裂缝传导率2000 md-inch。

著录项

  • 作者

    Cao, Liyuan.;

  • 作者单位

    University of Louisiana at Lafayette.;

  • 授予单位 University of Louisiana at Lafayette.;
  • 学科 Petroleum engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号