首页> 外文期刊>Electrocatalysis >Conductive Polymer Grafting Platinum Nanoparticles as Efficient Catalysts for the Oxygen Reduction Reaction: Influence of the Polymer Structure
【24h】

Conductive Polymer Grafting Platinum Nanoparticles as Efficient Catalysts for the Oxygen Reduction Reaction: Influence of the Polymer Structure

机译:导电聚合物接枝铂纳米颗粒作为氧还原反应的有效催化剂:聚合物结构的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Pt nanoparicles supported on a carbon powder Pt-NPs/C were synthesized by a polyol method and modified by grafting of different non-fluorinated and fluorinated proton conducting polymers. In the case of fluorinated polymers, the sulfonyl functions were attached either directly or through spacers (-O-PSA and -S-PSA) to the tetrafluorovinylic groups. Results in three-electrode electrochemical cell showed that the nature and structure of the grafted proton-conducting polymer influenced mass transport in the catalytic film towards the oxygen reduction active sites, the limiting current density in the catalytic film decreasing from ca. 97 mA cm(-2) for Pt-NPs/C to ca. 80 mA cm(-2) for Pt-NPs-(PSSA)/C and less than 60 mA cm(-2) for Pt-NPs-(PTFV-O-PSA)/C and Pt-NPs-(PTFV-S-PSA)/C. This influence was directly linked to the hydrophobic character of the polymers. The importance of the spacer on the electrochemicaly active surface area (ECSA), kinetic current density (j (k)), and mass activity (MA) at 0.9 V was pointed out. The j (k) at 0.9 V vs RHE increased from 2.8 to 3.6 mA cm(-2) for the nanocomposite catalysts without spacer and with a -O-PSA spacer, respectively. However, the best performance was obtained with Pt-NPs-(PSSA)/C with j (k) = 8.6 mA cm(-2) (Pt-NPs/C leading to 4.6 mA cm(-2)). Fuel cell tests also showed the influence of the grafted polymer on the water management in cathodes. Maximum power density of ca. 1 W cm(-2) at ca. 2.1 A cm(-2) was obtained with a Pt-NPS-(Nafion)/C cathode and a Pt-NPs-(PSSA)/C cathode without Nafion and ca. 0.85 W cm(-2) with a Pt-NPs-(PTFV-O-PSA)/C cathode. Durability under fuel cell working conditions revealed that the presence of the grafted conducting polymers in the cathode catalytic layer led to comparable electrical performances, but to better stabilities of the fuel cell performances than in the case of a classical Pt-NPs-(25 wt% Nafion)/C cathode: the potential losses at 38 A degrees C were two and four times lower with a Pt-NPs-(PTFV-O-PSA)/C (16 mu V h(-1)) cathode than with Pt-NPs-(PSSA)/C (40 mu V h(-1)) and Pt-NPs-(Nafion)/C (80 mu V h(-1)) cathodes, respectively. At 60 A degrees C, the potential loss with a Pt-NPs-(PTFV-O-PSA)/C cathode remained twice lower than with a Pt-NPs-(Nafion)/C cathode.
机译:通过多元醇法合成碳粉PT-NPS / C的Pt纳米柱通过多元醇方法合成并通过嫁接不同的非氟化和氟化质子传导聚合物来改性。在氟化聚合物的情况下,磺酰基官能团直接或通过间隔物(-O-PSA和-S-PSA)连接到四氟乙烯基基团。结果三电极电化学电池显示,接枝质子传导聚合物的性质和结构影响了催化膜在氧还原活性位点的质量输送,催化膜中的限制电流密度从CA降低。 97 ma cm(-2)Pt-nps / c至ca.对于PT-NPS-(PSSA)/ C和小于60 mA(-2)的80 mA cm(-2)用于Pt-NPS-(PTFV-O-PSA)/ C和PT-NPS-(PTFV-S) -PSA)/ c。这种影响与聚合物的疏水性能直接相关。指出了0.9V的电化学活性表面积(ECSA),动力电流密度(J(k))和质量活性(MA)对电化学的活性表面积(ECSA)的重要性。纳米复合催化剂的0.9V Vs rhe的J(k)在0.9V Vs rhe上增加了2.8至3.6 mA(-2),而不分别与间隔物和-O-PSA间隔物的纳米复合催化剂。然而,用j(k)= 8.6 mA cm(-2)(pt-nps / c)获得最佳性能(pssa)/ c,pt-nps-= 8.6 mA cm(-2)(导致4.6 mA cm(-2)))。燃料电池试验还显示接枝聚合物对阴极水管理的影响。 CA的最大功率密度。在加利福尼亚州1 W cm(-2)。 2.1用PT-NPS-(Nafion)/ C阴极和没有Nafion和Ca的PT-NPS-(PSSA)/ C阴极获得CM(-2)。 0.85 W cm(-2)具有PT-NPS-(PTFV-O-PSA)/ C阴极。在燃料电池工作条件下的耐久性表明,在阴极催化层中存在接枝的导电聚合物导致相当的电性能,而是比在经典PT-NPS-的情况下更好地保持燃料电池性能的稳定性(25wt% Nafion)/ C阴极:38℃的电位损失为PT-NPS-(PTFV-O-PSA)/ C(16μVH(-1))阴极而不是pt- NPS-(PSSA)/ C(40μmVH(-1))和PT-NPS-(Nafion)/ C(Nafion)/ C(80μmVH(-1))阴极。在60℃下,PT-NPS-(PTFV-O-PSA)/ C阴极的电位损失仍然低于PT-NPS-(NAFION)/ C阴极的两倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号