首页> 外文期刊>Electrocatalysis >Heterogeneous Electro-Fenton Process by MWCNT-Ce/WO3 Nanocomposite Modified GF Cathode for Catalytic Degradation of BTEX: Process Optimization Using Response Surface Methodology
【24h】

Heterogeneous Electro-Fenton Process by MWCNT-Ce/WO3 Nanocomposite Modified GF Cathode for Catalytic Degradation of BTEX: Process Optimization Using Response Surface Methodology

机译:通过MWCNT-CE / WO3纳米复合材料改性GF阴极的非均相电 - FENTON工艺用于BTEX的催化降解:工艺优化使用响应表面方法

获取原文
获取原文并翻译 | 示例
           

摘要

This study investigates the degradation and mineralization of BTEX by heterogeneous electro-Fenton process using GO/MWCNT/Fe3O4 as a catalyst and MWCNT-Ce/WO3/GF as an electrode. The nanoscale MWCNT-Ce/WO3 composite catalyst was distributed more evenly on GF surface to form a catalyst layer with higher oxygen reduction reaction performance. After optimization of pH and time variables, the Box-Behnken experimental design (BBD) and response surface methodology (RSM) were used to design and optimize the performance of proposed system and energy consumption. Analysis of variance (ANOVA) revealed that the quadratic model was adequately fitted to the experimental data with R-2 (0.98) and adj-R-2 (0.97). The significance levels of linear and interaction effects of the reaction parameters on process efficiency were obtained. Then, the optimization of the working conditions for the design of a sustainable treatment system with optimum efficiency was carried out using a response surface methodology. The experiment carried out in the calculated optimal conditions for the electro-Fenton degradation process (current intensity 300 mA, catalyst dosage of 0.6 g, initial BTEX concentration of 100 ppm, and electrode distance of 1 cm) showed a BTEX removal of 73.2% and energy consumption of 12.3 (kWh/m(3)) close to the theoretical value predicted by the model 73. 2% and 11.8 (kWh/m(3)), respectively. Furthermore, the reusability test of GO/MWCNT/Fe3O4 nanocomposite after several cycles confirmed the high catalytic activities of adsorbent. Comparing the proposed system with conventional GF electrode and Fe2+ catalyst showed that modification of cathode and catalyst led to increasing COD removal efficiency by around 36.6 and 31.6%, respectively. The findings of present study revealed that the proposed heterogeneous electro-Fenton process can be utilized as pre-treatment technology to improve the biodegradability and reduce the organic load of wastewater by combine oxidation and coagulation.
机译:本研究研究了使用GO / MWCNT / Fe3O4作为催化剂和MWCNT-Ce / WO3 / GF作为电极的异质电芬顿工艺对BTEX的降解和矿化。纳米级MWCNT-CE / WO3复合催化剂在GF表面上更均匀地分布,形成具有更高的氧还原反应性能的催化剂层。在优化pH和时间变量后,盒-Behnken实验设计(BBD)和响应面方法(RSM)用于设计和优化所提出的系统和能耗的性能。方差分析(ANOVA)显示,二次模型充分适用于R-2(0.98)和ADD-R-2(0.97)的实验数据。得到了反应参数对工艺效率的线性和相互作用效应的显着性水平。然后,使用响应表面方法进行具有最佳效率的可持续处理系统设计的优化工作条件。在计算出的电芬劣化过程(电流强度300mA,催化剂剂量为0.6g的催化剂剂量,100ppm的初始BTEX浓度和1cm的电极距离)中进行的实验显示出73.2%的BTEX去除73.2% 12.3的能量消耗分别接近模型73.2%和11.8(KWH / M(3))预测的理论值。此外,在几个循环后Go / MWCNT / Fe3O4纳米复合材料的可重用性试验证实了吸附剂的高催化活性。将提出的系统与常规GF电极和Fe2 +催化剂进行比较,表明阴极和催化剂的改性将分别提高COD去除效率约为36.6和31.6%。本研究的发现表明,所提出的非均相电芬顿工艺可用于预处理技术,以通过组合氧化和凝固来改善生物降解性并降低废水的有机载荷。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号