...
首页> 外文期刊>Earth-Science Reviews: The International Geological Journal Bridging the Gap between Research Articles and Textbooks >Nitrogen deposition differentially affects soil gross nitrogen transformations in organic and mineral horizons
【24h】

Nitrogen deposition differentially affects soil gross nitrogen transformations in organic and mineral horizons

机译:氮沉积差异地影响有机和矿物视野中的土壤总氮转化

获取原文
获取原文并翻译 | 示例

摘要

Reactive nitrogen (N) input can profoundly alter soil N transformations and long-term productivity of forest ecosystems. However, critical knowledge gaps exist in our understanding of N deposition effects on internal soil N cycling in forest ecosystems. It is well established that N addition enhances soil N availability based on traditional net mineralization rate assays. Yet, experimental additions of inorganic N to soils broadly show a suppression of microbial activity and protein depolymerization. Here we show, from a global meta-analysis of N-15-labelled studies that gross N transformation rates in forest soil organic and mineral horizons differentially respond to N addition. In carbon (C)-rich organic horizons, N addition significantly enhanced soil gross rates of N mineralization, nitrification and microbial NO3- immobilization rates, but decreased gross microbial NH4+ immobilization rates. In C-poor mineral soils, in contrast, N addition did not change gross N transformation rates except for increasing gross nitrification rates. An initial soil C/N threshold of approx. 14.6, above which N addition enhanced gross N mineralization rates, could explain why gross N mineralization was increased by N deposition in organic horizons alone. Enhancement of gross N mineralization by N deposition was also largely attributed to enhanced N mineralization activity per unit microbial biomass. Our results indicate that the net effect of N input on forest soil gross N transformations are highly stratified by soil C distribution along the soil profile, and thus challenge the perception that N availability ubiquitously limits N mineralization. These findings suggest that these differences should be integrated into models to better predict forest ecosystem N cycle and C sequestration potential under future N deposition scenarios.
机译:反应性氮气(N)输入可以深刻地改变土壤N变化和森林生态系统的长期生产率。然而,我们对森林生态系统中的内部土壤N循环循环的N沉积效应的理解存在危急知识差距。很好地确定,N添加基于传统的净矿化速率测定来增强土壤n可用性。然而,无机N对土壤的实验添加概括地显示了微生物活性和蛋白质解聚的抑制。在这里,我们从N-15标记研究的全球荟萃分析中展示了森林土壤有机和矿物视野中的N总转化率差异响应N添加。在碳(c) - 中等有机化物,N添加显着增强了N矿化,硝化和微生物No3-固定率的土壤总速率,但占微生物NH4 +固定率的总含量下降。相反,在C贫能矿物土壤中,除了增加氮化率的增加之外,n加入并没有改变粗n变换率。初始土壤C / N阈值约为。 14.6,高于其中N添加增强的N型矿化率,可以解释为什么N个沉积在单独的有机化环中增加了N沉积。通过N沉积增强载体粗糙矿化的增强也归因于每单位微生物生物量的增强的N矿化活性。我们的研究结果表明,森林土壤总体N转化的N个输入的净效应是沿土壤剖面的土壤C分布高度分层,从而挑战了N可用性普遍限制N矿化的感知。这些发现表明,这些差异应该集成到模型中,以更好地预测森林生态系统N周期和C未来的沉积方案中的C封存电位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号