首页> 外文期刊>Economic geology and the bulletin of the Society of Economic Geologists >Reconstruction of an Early Permian, Sublacustrine Magmatic-Hydrothermal System:Mount Carlton Epithermal Au-Ag-Cu Deposit, Northeastern Australia
【24h】

Reconstruction of an Early Permian, Sublacustrine Magmatic-Hydrothermal System:Mount Carlton Epithermal Au-Ag-Cu Deposit, Northeastern Australia

机译:重复于二叠纪早期,苏布鲁斯岩浆水热系统:澳大利亚东北部卡尔顿综酱Au-Ag-Cu矿床

获取原文
获取原文并翻译 | 示例
           

摘要

The Mt. Carlton Au-Ag-Cu deposit, northern Bowen basin, northeastern Australia, is an uncommon example of a sublacustrine hydrothermal system containing economic high-sulfidation epithermal mineralization. The deposit formed in the early Permian and comprises vein- and hydrothermal breccia-hosted Au-Cu mineralization within a massive rhyodacite porphyry (V2 open pit) and stratabound Ag-barite mineralization within vol?cano-lacustrine sedimentary rocks (A39 open pit). These orebodies are all associated with extensive advanced argillic alteration of the volcanic host rocks. Stable isotope data for disseminated alunite (δ~(34)S = 6.3-29.2‰; δ~(18)O_(SO4) = -0.1 to 9.8‰; δ~(18)O_(OH) = -15.3 to -3,4‰; δD = -102 to -79‰) and pyrite (δ~(34)S = -8.8 to -2.7‰), and void-filling anhydrite (δ~(34)S = 17.2-19.2‰; δ~(18)O_(SO4) = 1.8-5.7‰), suggest that early advanced argillic alteration formed within a magmatic-hydrothermal system. The ascending magmatic vapor (δ_(34)S_(∑S) ≈ -1.3‰) was absorbed by meteoric water (~50-60% meteoric component), producing an acidic (pH ≈ 1) condensate that formed a silicic → quartz-alunite → quartz-dickite-kaolinite zoned alteration halo with increasing distance from feeder structures. The oxygen and hydrogen isotope compositions of alunite-forming fluids at Mt. Carlton are lighter than those documented at similar deposits elsewhere, probably due to the high paleolatitude (~S60°) of northeastern Australia in the early Permian. Veins of coarse-grained, banded plumose alunite (δ~(34)S = 0.4-7.0‰; (δ~(18)O_(SO4) = 2.3-6.0‰; δ~(18)O_(OH) = -10.3 to -2.9‰; δD = -106 to -93‰) formed within feeder structures during the final stages of advanced argillic alteration. Epithermal mineralization was deposited subsequently, initially as fracture- and fissure-filling, Au-Cu-rich assemblages within feeder structures at depth. As the miner?alizing fluids discharged into lakes, they produced syngenetic Ag-barite ore. Isotope data for ore-related sulfides and sulfosalts (δ~(34)S = -15.0 to -3.0‰) and barite (δ~(34)S = 22.3-23.8‰;δ~(18)O_(SO4) = -0.2 to 1.3‰), and micro-thermometric data for primary fluid inclusions in barite (Th = 116°- 233°C; 0.0-1.7 wt % NaCl), are consistent with metal deposition at temperatures of -200 ± 40°C (for Au-Cu mineralization in V2 pit) and -150 ± 30°C (Ag mineralization in A39 pit) from a low-salinity, sulfur- and metal-rich magmatic-hydrothermal liquid that mixed with vapor-heated meteoric water. The mineralizing fluids initially had a high-sulfidation state, producing enargite-dominated ore with associated silicification of the early-altered wall rock. With time, the fluids evolved to an intermediate-sulfidation state, depositing sphalerite- and tennantite-dominated ore mineral assemblages. Void-filling massive dickite (δ~(18)O = -1.1 to 2.1%c; (δD = -121 to -103‰) with pyrite was deposited from an increasingly diluted magmatic-hydrothermal liquid (>70% meteoric component) exsolved from a progressively degassed magma. Gypsum (δ~(34)S = 11.4-19.2‰; δ~(18)O_(SO4) = 0.5-3.4‰) occurs in veins within postmineraliza-tion faults and fracture networks, likely derived from early anhydrite that was dissolved by circulating meteoric water during extensional deformation. This process may explain the apparent scarcity of hypogene anhydrite in lithocaps elsewhere. While the Mt. Carlton system is similar to those that form subaerial high-sulfidation epithermal deposits, it also shares several key characteristics with magmatic-hydrothermal systems that form base and precious metal mineralization in shallow-submarine volcanic arc and back-arc settings. The lacustrine paleosurface features documented at Mt. Carlton may be useful as exploration indicators for concealed epithermal mineralization in similar extensional terranes elsewhere.
机译:澳大利亚东北部北部Bowen盆地的Mt.Carlton Au-Ag-Cu-Cu-Au-Ag-Cu-Au-Au-Au-Ag-Cu-Au-Ag-Cu-Ag-Cu-Au-Ag-Cu-Ag-Cu-Ag-Cu-Au-Ag-Cu-Ag-Cu-Au-Ag-Cu-Au-Au-Ag-Cu-Au-Ag-Cu-Au-Ag-Cu。含有经济高硫化术术术术的寄生热水系统的一个罕见的例子。在早期的二叠套中形成的矿床,包括静脉和水热Breccia宿主的Au-Cu矿物质在大规模的籽粒沸石(V2露天坑)内,在Volα-Cano-Lapustine沉积岩(A39露天坑)内划分的Ag-Barite矿化。这些矿体均与火山主体岩石的广泛高级麦芽石改变相关。稳定的同位素数据用于传播的单位(Δ〜(34)S = 6.3-29.2‰;Δ〜(18)O_(SO4)= -0.1至9.8°;Δ〜(18)O_(OH)= -15.3至-3 ,4‰;Δd= -102至-79℃)和硫铁矿(δ〜(34)s = -8.8至-2.7℃),填充空隙填充空气水质(δ〜(34)s = 17.2-19.2‰;δ 〜(18)O_(SO4)= 1.8-5.7‰),表明在岩浆 - 水热系统内形成的早期晚期野性改变。上升岩蒸气(Δ_(34)S_(σs)≈~1.3‰)被迁移水(〜50-60%的陨石组分)吸收,产生形成硅→石英的酸性(pH≈1)冷凝物。 ALUNITE→石英 - 岩石 - 高岭石分区改变晕,随着馈线结构的距离增加。 Mt.Carlton在Mt.的氧气成形流体的氧气和氢同位素组合物比其他地方类似沉积物所示的氧气和氢同位素组成。可能是由于澳大利亚东北部的高歌剧(〜S60°)在早期二叠纪。粗颗粒的静脉,带状羽毛三通星(δ〜(34)s = 0.4-7.0‰;(δ〜(18)O_(SO4)= 2.3-6.0‰;Δ〜(18)O_(OH)= -10.3在先进的麦芽石改变的最终阶段期间形成馈线结构内的-2.9‰;Δd= -106至-93‰)。随后沉积骨骺矿化,最初作为饲喂器内的抗骨折和裂缝填充,富含富铜的组装深度的结构。作为矿工?化的液体排放到湖泊中,它们产生了合成的Ag-Barite矿石。对矿石相关的硫化物和硫化物的同位素数据(Δ〜(34)S = -15.0至-3.0℃)和重晶石(δ 〜(34)S = 22.3-23.8‰;δ〜(18)O_(SO4)= -0.2至1.3‰),并对重晶石的主要流体夹杂物的微观测量数据(Th = 116°-233°C; 0.0 -1.7wt%NaCl),在-200±40℃的温度下(在V2坑中的Au-Cu矿化)的温度下,与低盐度的-150±30°C(Ag矿化)的温度一致,富含金属富含蒸气式的气象水的富含金属富含岩浆 - 水热液体。矿化流体最初具有高硫化态,产生具有早期壁岩的相关硅化的烯键统治矿石。随着时间的推移,流体进化到中间硫化态,沉积斯巴尔氏型和腺系齐占矿石矿物组件。从越来越稀释的岩浆 - 水热液体(> 70%Meteoric组分)沉积吡钛石(ΔD= -121至-103℃,Δd= -121至-103),从越来越稀释的岩浆 - 水热液体(> 70%的Meteoric组分)沉积,空隙填充的大岩石(ΔD= -121至-103‰)从逐步脱气的岩浆。石膏(δ〜(34)S = 11.4-19.2‰;Δ〜(18)O_(SO4)= 0.5-3.4‰)发生在蛋白质嗪类故障和裂缝网络中的静脉中,可能来自于此通过在延伸变形期间循环循环的空间水溶液的早期空调。该方法可以在其他地方解释锂电坡中的低代Anhydrite的表观稀缺。而Mt.Carlton系统类似于那些形成骨髓高硫化术术沉积物的人,它也有几股浅层潜艇火山电弧和后弧设置形成碱和贵金属矿化的岩浆水热系统的关键特性。Mt.Carlton记录的湖泊古胸部特征可用作隐藏膜状矿物质的勘探指标在其他地方类似的延伸水域。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号